Author: Pinayev, I.
Paper Title Page
MOPPD016 Status of Proof-of-principle Experiment for Coherent Electron Cooling 400
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A. Elizarov, A.V. Fedotov, D.M. Gassner, Y. Hao, D. Kayran, V. Litvinenko, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: US DOE Office of Science, DE-FC02-07ER41499, DE-FG02-08ER85182; NERSC DOE contract No. DE-AC02-05CH11231.
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o’clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.
 
 
MOPPP028 SRF Photoinjector for Proof-of-principle Experiment of Coherent Electron Cooling at RHIC 622
 
  • D. Kayran, S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, X. Liang, G.T. McIntyre, I. Pinayev, B. Sheehy, J. Skaritka, T. Srinivasan-Rao, R. Than, J.E. Tuozzolo, Q. Wu, T. Xin
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and by Stony Brook DOE grant DE-SC0005713.
Coherent Electron Cooling (CEC) based on FEL amplifier promises to be a very good way to cool protons and ions at high energies. A proof of principle experiment to demonstrate cooling at 40 GeV/u is under construction at BNL. One of possible sources to provide sufficient quality electron beam for this experiment is a SRF photoinjector. In this paper we discuss design and simulated performance of the photoinjector based on existing 112 MHz SRF gun and newly designed single-cavity SRF linac operating at 704 MHz.
 
 
MOPPR092 SVD-BASED METHOD FOR MEASUREMENT OF BEAM PARAMETERS AND FLAG RESOLUTION 999
 
  • G.M. Wang, R.P. Fliller, I. Pinayev, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  In NSLS II booster to storage ring transport line, the typical beam size in vertical plane is ~60 μm, which requires very high flag resolution to get good beam parameters measurement. This paper describes a new SVD-based method to measure transverse beam parameters and flag resolution simultaneously with double quads scan. Implementation simulations of the proposed method are performed for a dispersion free region in the NSLS-II booster to storage ring transport line. With this method, it breaks the limitation of beam parameters measurement accuracy duo to the flag resolution.  
 
WEPPC109 Superconducting RF Systems for eRHIC 2474
 
  • S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, H. Hahn, D. Kayran, G.J. Mahler, G.T. McIntyre, C. Pai, I. Pinayev, V. Ptitsyn, J. Skaritka, R. Than, J.E. Tuozzolo, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, V. Litvinenko, T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Future electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron ERL and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.