Author: Moss, A.J.
Paper Title Page
MOPPC049 Status of the Non-scaling Fixed Field Alternating Gradient Ring Design for the International Design Study of the Neutrino Factory 241
 
  • J.S. Berg, H. Witte
    BNL, Upton, Long Island, New York, USA
  • M. Aslaninejad, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • N. Bliss, A.J. Moss
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The International Design Study of the Neutrino Factory is working towards delivering the optimized design of the neutrino factory facility to be presented in the Reference Design Report (RDR) in 2013. In the current baseline design a linear non-scaling fixed field alternating gradient accelerator (FFAG) was chosen as an efficient solution for the final muon acceleration. We describe updates to the design since our previous report*. We report on beam dynamics studies on the lattice. We describe recent work on the engineering for the lattice, and the results of a recent first pass at a cost estimate for the machine. Finally, we describe how an FFAG may be applicable to a lower energy neutrino factory in light of recent experimental results regarding the value of the theta(13) neutrino mixing angle**.
* J. S. Berg et al., in Proceedings of IPAC2011, San Sebastian, Spain, 832.
** F. P. An et al., Phys. Rev. Lett. 108, 171803 (2012); J. K. Ahn et al., arXiv:1204.0626v2 [hep-ex] (2012).
 
 
THPPR044 A New Electron Beam Test Facility (EBTF) at Daresbury Laboratory for Industrial Accelerator System Development 4074
 
  • P.A. McIntosh, D. Angal-Kalinin, S.R. Buckley, J.A. Clarke, A.R. Goulden, C. Hill, S.P. Jamison, J.K. Jones, A. Kalinin, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, T.T. Ng, B.J.A. Shepherd, R.J. Smith, S.L. Smith, N. Thompson, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, G.P. Diakun, A. Gleeson, T.J. Jones, B.G. Martlew, A.J. Moss, L. Nicholson, M.D. Roper, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Recent UK government funding has facilitated the implementation of a unique accelerator test facility which can provide enabling infrastructures targeted for the development and testing of novel and compact accelerator technologies, specifically through partnership with industry and aimed at addressing applications for medicine, health, security, energy and industrial processing. The infrastructure provision on the Daresbury Science and Innovation Campus (DSIC) will permit research into areas of accelerator technologies which have the potential to revolutionise the cost, compactness and efficiency of such systems. The main element of the infrastructure will be a high performance and flexible electron beam injector facility, feeding customised state-of-the-art testing enclosures and associated support infrastructure. The facility operating parameters and implementation status will be described, along with primary areas of commercialised technology development opportunities.