Author: Matveenko, A.N.
Paper Title Page
MOPPP016 Feasibility Study of an ERL-based GeV-scale Multi-turn Light Source 604
 
  • Y. Petenev, T. Atkinson, A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  A new generation of particle accelerators based on an Energy Recovery Linac (ERL) is a promising tool for a number of new applications. These include high brilliance light sources in a wide range of photon energies, electron cooling of ion beam and ERL-based electron-hadron colliders. Helmholtz-Zentrum Berlin started a feasibility study of GeV-scale multi-turn ERL-based light source (LS). This LS will work in diffraction limited regime in X-rays and with a short length of a light pulse in femtosecond region. The average and peak brightness will be at least an order of magnitude higher than synchrotron-based LS. In this work an overview of the future multi-turn light source is given. Modeling of the Beam Break Up instability is presented.  
 
TUPPD051 Operational Experience with the Nb/Pb SRF Photoelectron Gun 1518
 
  • T. Kamps, W. Anders, R. Barday, A. Jankowiak, J. Knobloch, O. Kugeler, A.N. Matveenko, A. Neumann, T. Quast, J. Rudolph, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyć
    The Andrzej Soltan Institute for Nuclear Studies, Centre Świerk, Świerk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
  • J. Teichert
    HZDR, Dresden, Germany
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • I. Will
    MBI, Berlin, Germany
 
  SRF photoelectron guns offer the promise of high brightness, high average current beam production for the next generation of accelerator driven light sources such as free electron lasers, THz radiation sources or energy-recovery linac driven synchrotron radiation sources. In a first step a fully superconducting RF (SRF) photoelectron gun is under development by a collaboration between HZB, DESY, JLAB, BNL and NCBJ. The aim of the experiment is to understand and improve the performance of a Nb SRF gun cavity coated with a small metallic Pb cathode film on the cavity backplane. This paper describes the highlights from the commissioning and beam parameter measurements. The main focus is on lessons learned from operation of the SRF gun.  
 
TUPPD062 The Source of Emittance Dilution and photoemission tunneling effect in Photocathode RF Guns 1542
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH-NG-636 and HRJRG-214.
Experimental data on HoBiCaT SRF photoinjector give an emittance which is much larger than the predicted thermal emittance. Modeling of photocathode RF gun beams with the different imperfections of experimental setup (alignment errors, inhomogeneity of quantum efficiency and laser power distributions on the cathode) is given. The main reason for the beam emittance dilution is photocathode field imperfections induced by field emitters that change the local electric field. Some field models of such photocathodes are tested in the simulations. The dependence of photocathode beam currents on the surface electric field was measured with the HoBiCaT SRF Photoinjector. The dependence can be explained by the tunneling effect described by Fowler-Nordheim like equation and is difficult to explain by usually applying Schottky effect.
 
 
TUPPD063 Interpretation of Dark Current Experimental Results in HZB SC RF Gun 1545
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko, A. Neumann
    HZB, Berlin, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH-NG-636 and HRJRG-214.
The experimental dark current measurement results are obtained on HZB SC RF gun. The field emitters are considered to be random defects on the back wall of the cavity. Conducting wires with 1 micron length, blobs of 200 micron diameter and ”tip on tip” combination of them are taken as dark current emitters in the cavity. RF fields were calculated with CLANS program. The dynamic simulation of dark currents from these emitters fit experimental data. The emitter heating power by RF induced current is four orders of magnitude larger than by the field emitted dark current. The RF induced emitter temperature is proportional to ω1/2 which explains the accelerating gradient limit of a cavity like Kilpatrik law. The RF processing by high order modes seems to be promising.
 
 
TUPPD064 Cathode Insert Design for SC RF Guns 1548
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko
    HZB, Berlin, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Assiciation VH-NG-636 and HRJRG-214.
The cathode inserts in superconducting (SC) RF guns are normal conducting devices attached to a SC RF gun cavity. They enable the photocathode replacement and, at the same time, preserve high quality factor and high fields in the RF guns. However, the insert may also limit the gun performance because of multipacting etc. The experience gathered in early designs at Wuppertal [1], and, more recently at BNL [2] and HZDR [3] is taken into account. We consider the design structure of the cathode insert worked out by BINP for 1 cell prototype of SC HZDR RF gun [4]. The detailed electric, mechanic, and thermal calculations of the initial [4] and the upgraded design are presented in this paper.
* A. Michalke et al., EPAC'92, p. 1014 (1992).
** A. Burrill et al., PAC07, p. 2544 (2007).
*** D. Janssen et al., NIM A507, 314 (2003).
**** D. Janssen et al., NIM A445, 408 (2000).
 
 
MOPPP015 Status of the BERLinPro Energy Recovery Linac Project 601
 
  • J. Knobloch, M. Abo-Bakr, W. Anders, R. Barday, K. Bürkmann-Gehrlein, V. Dürr, S.C. Heßler, A. Jankowiak, T. Kamps, O. Kugeler, B.C. Kuske, P. Kuske, A.N. Matveenko, G. Meyer, R. Müller, A. Neumann, K. Ott, Y. Petenev, D. Pflückhahn, T. Quast, J. Rahn, S.G. Schubert
    HZB, Berlin, Germany
 
  Funding: Funding provided by the BMBF and the State of Berlin
In October 2010 Helmholtz Zentrum Berlin received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact ERL is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1 mm·mrad emittance beam. Given the flexibility of ERLs, other operation modes such as short-bunch operation will also be investigated. The BERLinPro technology and know-how can then be transferred to a variety of ERL-based applications. Presently, BERLinPro is in the design phase and the optics has been settled. Furthermore, first beam has been achieved with a superconducting RF photoinjector, which represents an important step towards realizing a CW injector for BERLinPro. An overview of the present status and the conceptual design report is presented.