Author: Lebec, G.
Paper Title Page
TUPPP005 LUNEX5: A French FEL Test Facility Light Source Proposal 1611
 
  • A. Loulergue, C. Benabderrahmane, M. Bessière, P. Betinelli-Deck, F. Bouvet, A. Buteau, L. Cassinari, M.-E. Couprie, J. Daillant, J.-C. Denard, P. Eymard, B. Gagey, C. Herbeaux, M. Labat, A. Lestrade, P. Marchand, J.L. Marlats, C. Miron, P. Morin, A. Nadji, F. Polack, J.B. Pruvost, F. Ribeiro, J.P. Ricaud, P. Roy
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • B. Carré
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
  • G. Devanz, M. Luong
    CEA/DSM/IRFU, France
  • L. Farvacque, G. Lebec
    ESRF, Grenoble, France
  • G. Lambert, A. Lifschitz, V. Malka, A. Rousse
    LOA, Palaiseau, France
  • M. Le Parquier
    CERLA, Villeneuve d'Ascq, France
  • J. Lüning
    CCPMR, Paris, France
  • R. Roux
    LAL, Orsay, France
 
  LUNEX5 is a new synchrotron FEL source project aiming at delivering short and coherent X-ray pulses to probe ultrafast phenomena at the femto-second scale, to investigate extremely low density samples as well as to image individual nm scale objects. The proposed machine layout is based on a 400 MeV super-conducting Conventional Linear Accelerator (CLA) mainly composed of 2 XFEL type cryo-modules together with a normal-conducting high brightness photo RF gun. This present mature and reliable technology is able to deliver high quality electron bunches up to few kHz suitable for user experiments. Further more, the last decade improvement in synchronization and stability offer a fertile land to explore the different and innovative seeded FEL operations aiming at producing higher coherence and energetic X-rays for the pilot user full benefits. In parallel of the CLA branch, the very promising and highly innovative Laser Wake-Field Accelerator (LWFA) able to produce very short electron bunches in the range of the femto-second and high peak current up to few GeV is foreseen as a FEL bench test using the same undulator lines.  
 
THPPD001 Stretched-wire Measurements of Small Bore Multipole Magnets 3500
 
  • G. Lebec, J. Chavanne, C. Penel
    ESRF, Grenoble, France
 
  Stretched-wire (SW) measurements of magnetic multipoles have been performed at radii ranging from 0.5 mm to 4 mm, with an accuracy of 10-3 of the main multipole component. Theoretical aspects of SW measurements were investigated. The processing of the measured signals is based on a least square approach, instead of the Fourier transform widely used for rotating coil measurements. It allows correcting numerically the position errors of the SW and designing SW trajectory which are not sensitive to the main multipole, as with “bucked” rotating coils. This SW measurement bench was developed for the characterization of new ESRF magnets. It has been tested first with large aperture multipole magnets. An accuracy of 10-4 has been obtained for a measurement radius of 30 mm. There is a demand in the magnetic measurement community for measuring small bore multipole magnets, with radius smaller than 5 mm. A small permanent magnet quadrupole was built in order to test the bench at small measurement radii.