Author: Kwan, J.W.
Paper Title Page
MOEPPB005 Initial Commissioning of NDCX-II 85
 
  • S.M. Lidia, D. Arbelaez, W.G. Greenway, J.-Y. Jung, J.W. Kwan, T.M. Lipton, A. Pekedis, P.K. Roy, P.A. Seidl, J.H. Takakuwa, W.L. Waldron
    LBNL, Berkeley, California, USA
  • A. Friedman, D.P. Grote, W. M. Sharp
    LLNL, Livermore, California, USA
  • E.P. Gilson
    PPPL, Princeton, New Jersey, USA
 
  Funding: This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract. DE-AC02-05CH11231.
The Neutralized Drift Compression Experiment-II (NDCX-II) will generate ion beam pulses for studies of Warm Dense Matter and heavy-ion-driven Inertial Fusion Energy. The machine will accelerate 20-50 nC of Li+ to 1.2-3 MeV energy, starting from a 10.9-cm alumino-silicate ion source. At the end of the accelerator the ions are focused to a sub-mm spot size onto a thin foil (planar) target. The pulse duration is compressed from ~500 ns at the source to sub-ns at the target following beam transport in a neutralizing plasma. We first describe the injector, accelerator, transport, final focus and diagnostic facilities. We then report on the results of early commissioning studies that characterize beam quality and beam transport, acceleration waveform shaping and beam current evolution. We present WARP simulation results to benchmark against the experimental measurements.
 
 
TUPPD046 Characterization of Li+ Alumino-Silicate Ion Source for Target Heating Experiments 1506
 
  • P.K. Roy, W.G. Greenway, J.W. Kwan, S.M. Lidia, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California, USA
  • D.P. Grote
    LLNL, Livermore, California, USA
 
  Funding: *This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract. DE-AC02-05CH11231.
The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li+ ion beam with energy 1.2–3 MeV to achieve uniform heating up to 0.1–1 eV. Experiments will be done using the Neutralized Drift Compression Experiment-II (NDCX-II) facility. The NDCX-II accelerator has been designed to use a large diameter (10.9 cm) Li+ doped alumino-silicate source to produce short pulses of ≈93 mA beam current. Fabrication of a lithium source is complex, it is necessary to apply a higher temperature (>1200-degC) for thermionic emission, and the beam current density of this source is ~1mA/cm2 in the space-charge limited regime. Li+ emission is lower than the other alkaline ions sources (K+, Cs+). The lifetime of this source is roughly 50 hours, when pulsed. Characterization of an operational lithium alumino-silicate ion source, including beam emittance, is presented.