Author: Kuriyama, Y.
Paper Title Page
TUPPC022 Straight Scaling FFAG Experiment 1209
 
  • J.-B. Lagrange, Y. Ishi, Y. Kuriyama, Y. Mori, R. Nakano, B. Qin, T. Uesugi, E. Yamakawa
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Niwa, K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  Straight scaling FFAG experiment has been done at Kyoto University research reactor institute. Details and results are presented here.  
 
WEPPR006 Serpentine Acceleration in Scaling FFAG 2946
 
  • E. Yamakawa, Y. Ishi, Y. Kuriyama, J.-B. Lagrange, Y. Mori, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  A serpentine acceleration in scaling FFAG accelerator is examined. In this scheme, high-energy and high-current beam can be obtained in non-relativistic energy region. Longitudinal hamiltonian is derived analytically. Experiment to demonstrate a serpentine acceleration in scaling FFAG is done.  
 
THPPD024 Irradiation Effects in Superconducting Magnet Materials at Low Temperature 3551
 
  • M.Y. Yoshida, M.I. Iio, S. Mihara, T. Nakamoto, H. Nishiguchi, T. Ogitsu, M. Sugano, K. Yoshimura
    KEK, Ibaraki, Japan
  • M. Aoki, T. Itahashi, Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • Y. Kuriyama, Y. Mori, B. Qin, K. Sato, Q. Xu, T. Yoshiie
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  Superconducting magnets for high intensity accelerators and particle sources are exposed to severe radiation from beam collisions and other beam losses. Neutron fluence on the superconducting magnets for the next generation projects of high energy particle physics, such as LHC upgrades and the COMET experiment at J-PARC, is expected to exceed 1021 n/m2, which is close to the requirements on the fusion reactor magnets. Irradiation effects at low temperature in superconducting magnet materials should be reviewed to estimate the stability of the superconducting magnet system in operation and its life. The pion capture superconducting solenoids for the COMET experiment are designed with aluminum stabilized superconducting cable to reduce the nuclear heating by neutrons. Also, the heat is designed to be transferred in pure aluminum strips. Irradiation effects on the electrical conductance of aluminum stabilizer and other materials are tested at cryogenic temperature using the reactor neutrons. This paper describes the study on the irradiation effects for the magnet developments.