Author: Kuriki, M.
Paper Title Page
WEPPD055 Gamma-rays Generation with 3D 4-mirror Cavity for ILC Polarized Positron Source 2645
  • T. Akagi, S. Miyoshi
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima, Japan
  • S. Araki, Y. Funahashi, Y. Honda, T. Okugi, T. Omori, H. Shimizu, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • H. Kataoka, T. Kon
    Seikei University, Japan
  • M. Kuriki, T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • K. Sakaue, M. Washio
    RISE, Tokyo, Japan
  • R. Tanaka, H. Yoshitama
    Hiroshima University, Higashi-Hiroshima, Japan
  We are conducting gamma-rays generation experiment by the laser-Compton scattering using a Fabry-Perot cavity. We developed a 3D 4-mirror cavity, and it is installed at the KEK-ATF. By using a 3D 4-mirror cavity, small laser spot can be achieved with stable resonant condition. In addition, we aim 1900 times enhancement of input laser power by a 4-mirror cavity to increase the number of gamma-rays.  
TUPPD034 Multi-bunch Beam Generation by Photo-cathode RF Gun for KEK-STF 1479
  • M. Kuriki, S. Hosoda, H. Iijima
    HU/AdSM, Higashi-Hiroshima, Japan
  • A. Ayaka
    Sokendai, Ibaraki, Japan
  • H. Hayano, J. Urakawa, K. Watanabe
    KEK, Ibaraki, Japan
  • G. Isoyama, R. Kato, K. Kawase
    ISIR, Osaka, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • K. Sakaue
    RISE, Tokyo, Japan
  Funding: MEXT, Quantum beam project.
KEK-STF is doing R&D of Super-Conducting (SC) accelerator technology for ILC (International Linear Collider), based on 1.3 GHz RF system. For STF and ILC, the pulse length is 1ms and the repetition is 5Hz. We developed a L-band Normal-Conducting RF gun designed by DESY to provide electron beam over such long pulse duration. For NC Photo-cathode RF gun, such high duty and long pulse operation is a challenging task, because the detuning by the heat load of cavity dissipation power is significant. The RF gun provides the electron pulse train to SC accelerator modules which will be operated at 31.5 MV/m gradient. Precise RF control is essential for SC accelerator because the beam loading and input RF power should be well ballanced for a stable operation. The beam test to demonstrate the stable opeation is very important for SC accelerator R&D. The system is also used to demonstrate high-flux quasi-monochromatic X-ray generation by inverse Compton scattering at KEK-STF. The experiment is carried out from April 2012 to November 2012 at KEK-STF. We report the latest status of the multi-bunch generation by the RF gun.