Author: Kopp, S.E.
Paper Title Page
TUPPC040 Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster 1251
 
  • M.J. McAteer, S.E. Kopp
    The University of Texas at Austin, Austin, Texas, USA
  • V.A. Lebedev, E. Prebys
    Fermilab, Batavia, USA
  • A.V. Petrenko
    BINP SB RAS, Novosibirsk, Russia
 
  A beam-based method of optical model calibration using the measured orbit response matrix, known as the LOCO method, was successfully applied to Fermilab's rapid-cycling Booster synchrotron. Orbit responses were measured by individually changing the strength of each dipole corrector throughout the acceleration cycle, and dispersion was measured by changing the beam's radial offset. The model calibration procedure revealed large calibration errors for all elements in the Booster's recently-installed multipole corrector packages and beam position monitors. The resulting model was used to correct coupling and beta beating.  
 
WEPPR028 An Estimate of Out of Time Beam Upon Extraction for Mu2e 2994
 
  • N.J. Evans, S.E. Kopp
    The University of Texas at Austin, Austin, Texas, USA
  • E. Prebys
    Fermilab, Batavia, USA
 
  Funding: U.S. Dept. of Energy.
A bunched beam with specific structure is crucial to attaining the experimental sensitivity desired by the Mu2e collaboration. The final goal is a ratio of in-time to out-of-time beam, known as beam extinction, of 10-10. An AC dipole system is in development to attain the final goal by sweeping out-of-time beam onto a collimation system, but it is still necessary to achieve something on the order of 10-5 when beam is extracted from the Fermilab Debuncher ring to the experiment hall. Several sources of out-of-time beam in the Debuncher ring are analyzed, including: intrabeam scattering, RF noise, beam-gas interaction and scattering off of the extraction septum. Estimates are given for each source as well as a final estimate of total out-of-time beam expected upon extraction.