Author: Kelly, M.P.
Paper Title Page
WEPPC035 Design and Construction of a High-Power RF Coupler for PXIE 2284
 
  • M.P. Kelly, Z.A. Conway, M. Kedzie, S.V. Kutsaev, P.N. Ostroumov
    ANL, Argonne, USA
  • S. Nagaitsev
    Fermilab, Batavia, USA
 
  A power coupler has been designed and built at Argonne National Laboratory for use with the Project X Injector Experiment (PXIE) 162.5 MHz superconducting (SC) half-wave cavities. The 50 Ω coaxial capacitive coupler will be required to operate CW with up to 10 kW of forward power under any condition for the reflected power. A key feature is a moveable copper plated stainless steel bellows which will permit up to 3 cm of axial stroke and adjustment of Qext by roughly one order of magnitude in the range of 10-5 to 10-6. The mechanical and vacuum design will include two ceramic windows, one operating at room temperature and another at 70 Kelvin. The two window design allows the portion of the coupler assembled to the SC cavity in the clean room to be compact and readily cleanable. We present other design features including thermal intercepts to provide a large margin for RF heating and a mechanical guide assembly to operate cold and under vacuum with high reliability.  
 
WEPPC036 Electromagnetic Design of 15 kW CW RF Input Coupler 2286
 
  • S.V. Kutsaev, M.P. Kelly, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
A new power coupler is under development at Argonne National Laboratory for a cw 40 MeV proton/deuteron linac for the SARAF project in Israel. This linac requires one 15 kW RF input power per superconducting cavity. Two different cavity options are still under consideration: 109 MHz quarter-waves and 176 MHz half-waves. A coaxial capacitive input coupler has been designed and analyzed for these purposes. This paper presents the results of 3D electromagnetic simulations of this coupler together with the cavities mentioned above. An analysis of multipacting in the couplers is also presented.
 
 
WEPPC039 Development of a Half-Wave Resonator for Project X 2295
 
  • P.N. Ostroumov, Z.A. Conway, R.L. Fischer, S.M. Gerbick, M. Kedzie, M.P. Kelly, B. Mustapha
    ANL, Argonne, USA
  • I.V. Gonin, S. Nagaitsev
    Fermilab, Batavia, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under Contract DE-AC02-76CH03000 and DE-AC02-06CH11357.
We have developed an optimized electromagnetic and mechanical design of a 162.5 MHz half-wave resonator (HWR) suitable for acceleration of high-intensity proton or H-minus beams in the energy range from 2 MeV to 10 MeV. The cavity design is based on recent advances in SRF technology for TEM-class structures being developed at ANL. Highly optimized EM parameters were achieved by adjusting the shapes of both inner and outer conductors. This new design will be processed with a new HWR horizontal electropolishing system after all mechanical work on the cavity including the welding of the helium jacket is complete. The prototype HWR is being fabricated by domestic vendors under ANL’s supervision.
 
 
THPPP054 A New Half-Wave Resonator Cryomodule Design for Project-X 3865
 
  • Z.A. Conway, A.O. Bergado, R.L. Fischer, M. Kedzie, M.P. Kelly, B. Mustapha, P.N. Ostroumov
    ANL, Argonne, USA
  • V.A. Lebedev
    Fermilab, Batavia, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under Contract DE-AC02-76CH03000 and DE-AC02-06CH11357.
We present the current status of our Project-X half-wave resonator cryomodule development effort. The Project-X injector requires a single cryomodule with 9 superconducting, 162.5-MHz, β = 0.11, half-wave resonators interleaved with 6 integrated superconducting solenoids/steering coils. This cryomodule is being designed and build by ANL with the intent of delivering a device which has all external connections to the cryogenic, RF, and instrumentation systems located at removable junctions separated from the clean cavity vacuum system. Issues include the ease of assembly, cavity cleanliness, interfacing to subsystems (e.g., cryogenics, couplers, tuners, etc.), and satisfying the ANL/FNAL/DOE guidelines for vacuum vessels. We employ proven warm-to-cold low-particulate beamline transitions to minimize unused space along the linac, a top-loading box design that minimizes the size of the clean room assembly, and compact beamline devices to minimize the length of the focusing period.