Author: Kazakov, S.
Paper Title Page
TUPPR049 An X-band Standing Wave Dielectric Loaded Accelerating Structure 1927
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S.H. Gold
    NRL, Washington, DC, USA
  • S. Kazakov
    Fermilab, Batavia, USA
  • R. Konecny
    ANL, Argonne, USA
 
  Funding: DOE SBIR Phase I grant #DE-SC0006303
An 11.4 GHz standing wave dielectric loaded accelerating structure was recently developed. We expect to achieve a 120 MV/m gradient powered by a 10 MW 200 ns rf pulse from the X-band Magnicon at the Naval Research Laboratory. The structure uses on-axis rf coupling, which helps to localize the maximum EM fields within the dielectric region. Bench testing shows excellent agreement with the simulation results. The high power rf test is scheduled for January 2012.
 
 
WEPPC050 Main Couplers for Project X 2324
 
  • S. Kazakov, M.S. Champion, S. Cheban, T.N. Khabiboulline, M. Kramp, Y. Orlov, V. Poloubotko, O. Pronitchev, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Design of 325MHz and 650MHz multi-kilowatt CW main couplers for superconducting linac of Project X is described. Results of electrodynamics, thermal and mechanical simulations is presented.  
 
WEPPC051 Multipactor Simulation in SC Elliptical Shape Cavities 2327
 
  • S. Kazakov, I.V. Gonin, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Typically multipactor exists near equator region in elliptical shape superconductive cavities. If the multipactor power zone dose not coincide with operating power, it is often the cavity has to pass through it before it reaches operating level of field. Results of multipactor simulations for several shapes of elliptical cavity are presented. New shape, which significantly suppresses multipactor, is found.  
 
WEPPD005 SSR1 Cryomodule Design PXIE 2504
 
  • T.H. Nicol, S. Cheban, M. Chen, S. Kazakov, F. McConologue, Y. Orlov, D. Passarelli, V. Poloubotko, O. Pronitchev, L. Ristori, I. Terechkine
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy
Fermilab is planning to design and build a Project X Injector Experiment (PXIE), a cw linac, as a means of validating the Project X concept, reducing technical risks, and obtaining experience in the design and operation of a superconducting proton linac. The overall facility will include an ion source, low and medium-energy beam transport sections, a radio frequency quadrupole, and two cryomodules containing superconducting cavities. One will contain nine half-wave resonators operating at 162.5 MHz and six superconducting solenoids. The second will contain eight single spoke resonators (SSR1) operating at 325 MHz and four superconducting solenoids. This paper describes the design of the cryomodule being developed to house the 325 MHz single spoke resonators. Each of the main cryomodule systems will be described; cryogenic systems and instrumentation, cavity and solenoid positioning and alignment, conduction-cooled current leads, RF input couplers, magnetic shielding, cold-to-warm beam tube transitions, interfaces to interconnecting equipment and adjacent modules, as well as the overall assembly procedure.
 
 
THPPC041 704 MHz Fast High-power Ferroelectric Phase Shifter for Energy Recovery Linac Applications 3374
 
  • S.V. Shchelkunov
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • J.L. Hirshfield
    Omega-P, Inc., New Haven, USA
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Kazakov, V.P. Yakovlev
    Fermilab, Batavia, USA
  • A.B. Kozyrev
    LETI, Saint-Petersburg, Russia
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg, Russia
 
  Funding: Research supported by the U.S. Department of Energy, Office of High Energy Physics
Development, tests, and evaluation of a fast electrically-controlled 704 MHz tuner for Energy Recovery Linacs that employs an electrically -controlled ferroelectric component are presented. The tuner is a refinement of an already tested prototype described elsewhere. In the new concept, a collection of ferroelectric assemblies behave as cavities configured as transmission components within a coaxial waveguide. Each assembly is based on a ring-like ferroelectric ceramic with its height, inner and outer diameters, and the shape of edges adjusted to insure a clean operating mode, and relatively low field strength. Several assemblies serve to widen the passband and increase tunability. The tuner is to deliver fast (~100-200 ns) phase adjustment from 0-to-100 degrees when biased by voltages from 0-to-15kV; the design promises to handle 50 kW CW and 900 kW of pulsed power. A scaled version is also considered to operate at 1300 MHz while handling 500 kW of pulsed power. Our latest findings, related issues, and plans for experiments are discussed.
 
 
THPPP063 CW Room Temperature Re-buncher for the Project X Front End 3880
 
  • G.V. Romanov, M.H. Awida, M. Chen, I.V. Gonin, S. Kazakov, R.A. Kostin, V.A. Lebedev, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  At Fermilab there is a plan to construct the Project X Injector Experiment (PXIE) facility - a prototype of the front end of the Project X, a multi-MW proton source based on a superconducting linac. The construction and successful operations of this facility will validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Project. The front end of the linac contains a cw room-temperature MEBT section which comprises an ion source, RFQ, and high-bandwidth bunch selective chopper. The length of the MEBT exceeds 9 m, so three re-bunching cavities are used to support the beam longitudinal dynamics. The paper reports RF design of the re-bunchers along with preliminary beam dynamic and thermal analysis of the cavities.