Author: Kankiya, P.
Paper Title Page
WEPPC114 Design, Simulation and Conditioning of the Fundamental Power Couplers for BNL SRF Gun 2489
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, S. Deonarine, D.M. Gassner, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, A.N. Steszyn, T.N. Tallerico, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, G.J. Whitbeck
    AES, Medford, NY, USA
  Funding: This work was supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE.
The 704 MHz SRF gun for the BNL Energy Recovery Linac (ERL) prototype uses two fundamental power couplers (FPCs) to deliver up to total 1 MW of CW RF power into the half-cell cavity. To prepare the couplers for high-power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A room-temperature test stand was configured for conditioning FPCs in full reflection regime with varied phase of the reflecting wave. The FPCs have been conditioned up to 250 kW in pulse mode and 125 kW in CW mode. The multipacting simulations were carried out with Track3P code developed at SLAC. The simulations matched the experimental results very well. This paper presents the FPC RF and thermal design, multipacting simulations and conditioning of the BNL gun FPCs.
WEPPD084 The E-Lens Test Bench for Rhic Beam-Beam Compensation 2720
  • X. Gu, Z. Altinbas, J.N. Aronson, E.N. Beebe, W. Fischer, D.M. Gassner, K. Hamdi, J. Hock, L.T. Hoff, P. Kankiya, R.F. Lambiase, Y. Luo, M. Mapes, J.-L. Mi, T.A. Miller, C. Montag, S. Nemesure, M. Okamura, R.H. Olsen, A.I. Pikin, D. Raparia, P.J. Rosas, J. Sandberg, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.