Author: Danilov, V.V.
Paper Title Page
MOYCP01 Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator 16
 
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator underway at Fermilab.  
slides icon Slides MOYCP01 [2.816 MB]  
 
TUPPC090 Beam Physics of Integrable Optics Test Accelerator at Fermilab 1371
 
  • A. Valishev, S. Nagaitsev
    Fermilab, Batavia, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Fermi Research Alliance, LLC operates Fermilab under Contract DE-AC02-07CH11359 with the US Department of Energy.
Fermilab's Integrable Optics Test Accelerator is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.
 
 
TUPPC100 On Quantum Integrable Systems 1392
 
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev
    Fermilab, Batavia, USA
 
  Funding: This research is sponsored by Oak Ridge National Lab, under Contract No. DE-AC05-00OR22725, and Fermi National Lab, under Contract No. DE-AC02-07CH11359.
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case.
 
 
WEPPR012 Simulating High-Intensity Proton Beams in Nonlinear Lattices with PyORBIT 2961
 
  • S.D. Webb, D.T. Abell, D.L. Bruhwiler, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • V.V. Danilov, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, USA
 
  High-intensity proton linacs and storage rings are essential for a) state-of-the-art neutron source user facilities, b) extending the high-energy physics intensity frontier, c) as a driver to generate pions for a future neutrino factory or muon collider, and d) for transmutation of radioactive waste and associated energy production. For example, Project X at Fermilab will deliver MW proton beams at energies ranging from 3 to 120 GeV. Nonlinear magnetic lattices with large tune spreads and with integrable*, nearly integrable** and chaotic* dynamics have been proposed to maximize dynamic aperture and minimize particle loss. We present PyORBIT*** simulations of proton dynamics in such lattices, including the effects of transverse space charge.
* V. Danilov and S. Nagaitsev, PR ST-AB 13 084002 (2010)
** K. Sonnad and J. Cary, Phys. Rev. E 69 056501 (2004)
*** A. Shishlo, J. Holmes and T. Gorlov, From Proceedings of IPAC '09 351-354