Author: Corlett, J.N.
Paper Title Page
MOPPP040 Resistive Wall Heating of the Undulator in High Repetition Rate FELs 652
 
  • J. Qiang, J.N. Corlett, P. Emma
    LBNL, Berkeley, California, USA
  • J. Wu
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminary results suggest that the heat load in the undulator is about 2 W/m with an aperture size of 6 mm for nominal NGLS design parameters.
 
 
TUEPPB013 Development of an Advanced Computational Tool for Start-to-End Modeling of Next Generation Light Sources 1143
 
  • J. Qiang, J.N. Corlett, C.E. Mitchell, C. F. Papadopoulos, G. Penn, R.D. Ryne, M. Venturini
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Start-to-end simulation plays an important role in designing next generation light sources. In this paper, we present recent progress in further development and application of the parallel beam dynamics code, IMPACT, towards the fully start-to-end, multi-physics simulation of a next generation X-ray FEL light source. We will discuss numerical methods and physical models used in the simulation. We will also present some preliminary simulation results of a beam transporting through photoinjector, beam delivery system, and FEL beamlines.
 
 
TUPPP070 Next Generation Light Source R&D and Design Studies at LBNL 1762
 
  • J.N. Corlett, B. Austin, K.M. Baptiste, D.L. Bowring, J.M. Byrd, S. De Santis, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, G. Huang, T. Koettig, S. Kwiatkowski, D. Li, T.P. Lou, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, D. Schlueter, R.W. Schoenlein, J.W. Staples, C. Steier, C. Sun, T. Vecchione, M. Venturini, W. Wan, R.P. Wells, R.B. Wilcox, J.S. Wurtele
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
LBNL is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately one MHz. The cw superconducting linear accelerator is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for different modes of operation, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds. In this paper we describe conceptual design studies and optimizations. We describe recent developments in the design and performance parameters, and progress in R&D activities.
 
 
TUPPP073 Machine Parameter Studies for an FEL Facility Using STAFF 1768
 
  • M.W. Reinsch, B. Austin, J.N. Corlett, L.R. Doolittle, P. Emma, G. Penn, D. Prosnitz, J. Qiang, A. Sessler, M. Venturini
    LBNL, Berkeley, California, USA
  • J.S. Wurtele
    UCB, Berkeley, California, USA
 
  Designing an FEL facility requires balancing multiple science needs, FEL and accelerator physics constraints, and engineering limitations. STAFF (System Trade Analysis for an FEL Facility) is a MATLAB program that enables the user to rapidly explore a large range of Linac and FEL design options to meet science requirements. The code uses analytical models such as the Ming Xie formulas when appropriate and look-up tables when necessary to maintain speed and flexibility. STAFF's modular design simplifies the inclusion of new physics models for FEL harmonics, wake fields, cavity higher-order modes and aspects of linac design such as the optimization of a laser heater, harmonic linearizer, and one or more bunch compressors. Code for the microbunching instability has been included as well. STAFF also supports multiple undulator technologies. STAFF permits the user to study error tolerances and multiple beamlines so as to explore the full capabilities of an entire user facility. This makes it possible to optimize the integrated system in terms of performance metrics such as photons/pulse, photons/sec and tunability range.  
 
TUPPP074 Beam Dynamics Studies of a High-repetition Rate Linac Driver for a 4th-generation Light Source 1771
 
  • M. Venturini, J.N. Corlett, P. Emma, C. F. Papadopoulos, G. Penn, M. Placidi, J. Qiang, M.W. Reinsch, F. Sannibale, C. Steier, R.P. Wells
    LBNL, Berkeley, California, USA
 
  We present progress toward the design of a super-conducting linac driver of a high repetition rate FEL-based soft x-ray light source. The machine is intended to accept beams generated by the APEX* photocathode gun, operating in the MHz range, and deliver them to an array of SASE and seeded FEL beamlines. After reviewing the beam-dynamics considerations that are informing specific lattice choices we discuss the expected performance of the proposed machine design and its ability to meet the desired FEL specifications. We consider the merit of possible alternate designs (e.g., a one-stage compressor vs. a two-stage compressor) and the trade-offs between competing demands on the beam attributes (e.g., high peak current vs. acceptable energy spread).
* F. Sannibale et al., this conference.
 
 
WEEPPB004 Status of the APEX Project at LBNL 2173
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, J.M. Byrd, C.W. Cork, J.N. Corlett, S. De Santis, L.R. Doolittle, J.A. Doyle, P. Emma, J. Feng, D. Filippetto, G. Huang, H. Huang, T.D. Kramasz, S. Kwiatkowski, W.E. Norum, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G.J. Portmann, J. Qiang, D.G. Quintas, J.W. Staples, T. Vecchione, M. Venturini, M. Vinco, W. Wan, R.P. Wells, M.S. Zolotorev, F.A. Zucca
    LBNL, Berkeley, California, USA
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
  • C.M. Pogue
    NPS, Monterey, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
The Advanced Photo-injector Experiment (APEX) at the Lawrence Berkeley National Laboratory is focused on the development of a high-brightness high-repetition rate (MHz-class) electron injector for X-ray FEL applications. The injector is based on a new concept gun, utilizing a normal conducting 186 MHz RF cavity operating in cw mode in conjunction with high quantum efficiency photocathodes capable of delivering the required repetition rates with available laser technology. The APEX activities are staged in 3 main phases. In Phases 0 and I, the gun will be tested at its nominal energy of 750 keV and several different photocathodes are tested at full repetition rate. In Phase II, a pulsed linac will be added for accelerating the beam at several tens of MeV to reduce space charge effects and measure the high-brightness performance of the gun when integrated in an injector scheme. At Phase II energies, the radiation shielding configuration of APEX limits the repetition rate to a maximum of several Hz. Phase 0 is under commissioning, Phase I under installation, and initial activities for Phase II are underway. This paper presents an update on the status of these activities.
 
 
WEPPC031 Completed Assembly of the Daresbury International ERL Cryomodule and its Implementation on ALICE 2272
 
  • P.A. McIntosh, M.A. Cordwell, P.A. Corlett, P. Davies, E. Frangleton, P. Goudket, K.J. Middleman, S.M. Pattalwar, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh
    BNL, Upton, Long Island, New York, USA
  • A. Büchner, F.G. Gabriel, P. Michel
    HZDR, Dresden, Germany
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California, USA
  • G.H. Hoffstaetter, M. Liepe, H. Padamsee, P. Quigley, J. Sears, V.D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
  • T.J. Jones, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • D. Proch, J.K. Sekutowicz
    DESY, Hamburg, Germany
  • T.I. Smith
    Stanford University, Stanford, California, USA
 
  The completion of an optimised SRF cryomodule for application on ERL accelerators has now culminated with the successful assembly of an integrated cryomodule, following an intensive 5 years of development evolution. The cryomodule, which incorporates 2 x 7-cell 1.3 GHz accelerating structures, 3 separate layers of magnetic shielding, fully adjustable & high power input couplers and fast piezo tuners, has been installed on the ALICE ERL facility at Daresbury Laboratory. It is intended that this will permit operational optimisation for maximised efficiency demonstration, through increased Qext adjustment whilst retaining both effective energy recovery and IR-FEL lasing. The collaborative design processes employed in completing this new cryomodule development are explained, along with the assembly and implementation procedures used to facilitate its successful installation on the ALICE ERL facility.  
 
WEPPR031 Injector Beam Dynamics for a High-repetition Rate 4th-generation Light Source 3000
 
  • C. F. Papadopoulos, J.N. Corlett, P. Emma, D. Filippetto, G. Penn, J. Qiang, M.W. Reinsch, F. Sannibale, C. Steier, M. Venturini, R.P. Wells
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
We report on the beam dynamics studies and optimization methods for a high-repetition (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beam compression and preservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.