Author: Cary, J.R.
Paper Title Page
WEPPR012 Simulating High-Intensity Proton Beams in Nonlinear Lattices with PyORBIT 2961
 
  • S.D. Webb, D.T. Abell, D.L. Bruhwiler, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • V.V. Danilov, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, USA
 
  High-intensity proton linacs and storage rings are essential for a) state-of-the-art neutron source user facilities, b) extending the high-energy physics intensity frontier, c) as a driver to generate pions for a future neutrino factory or muon collider, and d) for transmutation of radioactive waste and associated energy production. For example, Project X at Fermilab will deliver MW proton beams at energies ranging from 3 to 120 GeV. Nonlinear magnetic lattices with large tune spreads and with integrable*, nearly integrable** and chaotic* dynamics have been proposed to maximize dynamic aperture and minimize particle loss. We present PyORBIT*** simulations of proton dynamics in such lattices, including the effects of transverse space charge.
* V. Danilov and S. Nagaitsev, PR ST-AB 13 084002 (2010)
** K. Sonnad and J. Cary, Phys. Rev. E 69 056501 (2004)
*** A. Shishlo, J. Holmes and T. Gorlov, From Proceedings of IPAC '09 351-354