Author: Campbell, R.F.
Paper Title Page
MOPPR079 Horizontal Beam-size Measurements at CESR-TA Using Synchrotron-light Interferometer 972
  • S. Wang, J.V. Conway, D.L. Hartill, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • R.F. Campbell, R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  Funding: DOE Award DE-FC02-08ER41538 NSF Award (PHY-0734867) NSF Award (PHY-1002467) NSF Award (PHY-1068662).
A horizontal beam profile monitor utilizing visible synchrotron radiation from a bending magnet has been designed and installed in CESR. The monitor employs a double-slit interferometer which has been successfully implemented to measure horizontal beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 microns can be measured with a resolution of approximately 5 microns. The method for extracting the horizontal beam size from the interference pattern is presented and its application to intrabeam scattering studies is described. A configuration for measuring the small vertical beam size is also discussed.
WEYA02 Studies at CesrTA of Electron-Cloud-Induced Beam Dynamics for Future Damping Rings 2081
  • G. Dugan, M.G. Billing, K.R. Butler, J.A. Crittenden, M.J. Forster, D.L. Kreinick, R.E. Meller, M.A. Palmer, G. Ramirez, M.C. Rendina, N.T. Rider, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • R.F. Campbell, R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
  • J.Y. Chu
    CMU, Pittsburgh, Pennsylvania, USA
  • J.W. Flanagan, K. Ohmi
    KEK, Ibaraki, Japan
  • M.A. Furman, M. Venturini
    LBNL, Berkeley, California, USA
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
  Funding: US National Science Foundation PHY-0734867, PHY-1002467, and PHY-1068662; US Dept. of Energy DE-FC02-08ER41538; and the Japan/US Cooperation Program.
Electron clouds can adversely affect the performance of accelerators, and are of particular concern for the design of future low emittance damping rings. Studies of the impact of electron clouds on the dynamics of bunch trains in CESR have been a major focus of the CESR Test Accelerator program. In this paper, we report measurements of coherent tune shifts, emittance growth, and coherent instabilities carried out using a variety of bunch currents, train configurations, beam energies, and transverse emittances, similar to the design values for the ILC damping rings. We also compare the measurements with simulations which model the effects of electron clouds on beam dynamics, to extract simulation model parameters and to quantify the validity of the simulation codes.
slides icon Slides WEYA02 [2.033 MB]