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Electron clouds can adversely affect the performance of accelerators, and
are of particular concern for the design of future low emittance damping
rings.
Studies of the impact of electron clouds on the dynamics of bunch trains
in Cesr have been a major focus of the Cesr Test Accelerator (CesrTA)
program.
In this presentation, we report measurements along bunch trains of

= coherent tune shifts,

= coherent instability signals,

= coherent damping rates, and

* emittance growth.
The measurements were made for a variety of bunch currents, train
configurations, beam energies and transverse emittances, similar to the
design values for the ILC damping rings.
The measurements will be compared with simulations which model the
effects of electron clouds on beam dynamics, to extract simulation model
parameters and to quantify the validity of the simulation codes.
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A large variety of bunch-by-bunch coherent tune
measurements have been made, using one or
more gated BPM’s, in which a whole train of
bunches is coherently excited, or in which
individual bunches are excited.

These data cover a wide range of beam and
machine conditions.

The change in tune along the train due to the
buildup of the electron cloud has been compared
with predictions based on the electron cloud
simulation codes (POSINST and ECLOUD).

Quite good agreement has been found between
the measurements and the computed tune shifts.
The details have been reported in previous
papers and conferences.

The agreement constrains many of the model
parameters used in the buildup codes and gives
confidence that the codes do in fact predict
accurately the average density of the electron
cloud measured in CesITA.
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Since synchrotron radiation photons
generate the photoelectrons which seed
the cloud, the model predictions depend
sensitively on the details of the radiation
environment in the vacuum chamber. To
better characterize this environment, a
new simulation program, SYNRAD3D,
has been developed.

This program predicts the distribution and
energy of absorbed synchrotron radiation
photons around the ring, including
specular and diffuse scattering in three
dimensions, for a realistic vacuum
chamber geometry.

The output from this program can be
used as input to the cloud buildup codes,
thereby eliminating the need for any
additional free parameters to model the
scattered photons.

5/23/12
New Orleans, LA

SYNRAD3D predictions for distributions
of absorbed photons on the CesrTA

vacuum chamber wall for drift and dipole

polar angle

regions, at 5.3 GeV.
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input to POSINST.
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« Using a high-sensitivity, filtered and gated BPM, and a spectrum
analyzer, bunch-by-bunch frequency spectra have been collected for a
variety of machine and beam conditions, to detect signals of single-bunch
Instabilities which develop along trains of positron bunches.

« Under conditions in which the beam is transversely self-excited via the
electron cloud, these frequency spectra exhibit the vertical m = +/- 1
head-tail (HT) lines, separated from the vertical betatron line by
approximately the synchrotron frequency, for many of the bunches along
the train. The amplitude of these lines typically (but not always) grows
along the train.

« We attribute the presence of these lines to a vertical head-tail instability
induced by the electron cloud.
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Power Spectrum, vertical betatron line: Data set 00126
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Vertical synchrobetatron lines —fs: +1 (red), —1 (blue)
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Vertical head-tail lines: correlation with cloud density
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 The amplitude of the HT lines depends strongly on the vertical
chromaticity, the beam current and the number of bunches

« For a 45 bunch train, the HT lines have a maximum power around
bunch~30; the line power is reduced for later bunches.

 There is a weak dependence of the onset and amplitude of the HT lines
on the synchrotron tune, the single-bunch vertical emittance, and the
vertical feedback.

« Under some conditions, the first bunch in the train also exhibits a head-
tail line (usually m=-1 only). The presence of a precursor"” bunch a few
hundred ns before the start of the train can eliminate the m=-1 signal in
the first bunch.

— One explanation is that there may be a significant “trapped” cloud density near the
beam which lasts long after the bunch train has ended, and which is dispersed by the
precursor bunch. Indications from RFA measurements and simulations indicate this
“trapped” cloud may be in the quadrupoles and wigglers.
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As the electron cloud builds up along a train, it will modify the coherent damping
rates of each bunch, as well as producing tune shifts. Measurements of bunch-by-
bunch damping rates provide additional information on the nature of the effective
iImpedance of the cloud.

Bunch-by-bunch damping rate measurements have been done for
— betatron line:

» Drive a single bunch via the transverse feedback system’s external
modulator.

* Observe the output from a button BPM, gated on the same bunch, using a
spectrum analyzer in tuned-receiver mode set to the betatron line frequency.

* Measure the damping rate of the betatron line’s power after the drive is
turned off.

— m=+/-1 head talil lines:

« Same technique as for the betatron line, but the tuned receiver is set to the
head-tail line frequency.

* In addition, a CW drive is applied to the RF cavity phase to provide the
longitudinal excitation necessary to observe the head-tail line below the
instability threshold.

May 23, 2012 IPAC'12 15
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Using an x-ray beam size monitor (XBSM), bunch-by-bunch beam position
and size measurements have been made on a turn by-

turn basis for positron beams. From the beam size measurements,

the evolution of the beam emittance along trains
of bunches has been measured.

D Line x-ray beam line

S ST |
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The CesrTA research program has investigated the dynamics of trains of positron
bunches in the presence of the electron cloud through measurements of bunch-by-
bunch coherent tune shifts, frequency spectra, and beam size.

Coherent tune shifts have been compared with the predictions of cloud buildup
models (augmented with a new code to characterize the photoelectrons) in order
to validate the buildup models and determine their parameters.

Frequency spectra have been used to determine the conditions under which
signals for electron-cloud-induced head-tail instabilities develop.

Drive-damp measurement technigues are being developed to characterize the
stability of bunches in the train before the onset of the head-tail instability.

An X-ray beam size monitor has been used to determine the conditions under
which beam size growth occurs, and to correlate these observations with the
frequency spectral measurements.

Simulation codes have been used to model the cloud-induced head-tail instability.
The predicted features of the instability agree reasonably well with the
measurements.

The success of the cloud buildup and head-tail instability codes in modelling the
observations gives confidence that these codes can be used to accurately predict
the performance of future storage rings.
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