Author: Albert, F.
Paper Title Page
MOPPP011 Narrow Band Optimization of a Compton Gamma-Ray Source Produced From an X-Band Linac 592
 
  • F. Albert, S.G. Anderson, C.P.J. Barty, D.J. Gibson, F.V. Hartemann, R.A. Marsh, S.S.Q. Wu
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Nuclear photonics is an emerging field of research that will require high precision gamma-ray (MeV) sources. In particular, nuclear resonance fluorescence applications necessitate a low (< 1%) relative gamma-ray spectral width. Within this context, Compton scattering, where laser photons are scattered off relativistic electron beams to produce tunable, collimated gamma rays, will produce the desired gamma-ray output. This paper will present the spectral narrowband optimization of such a light source currently being built at LLNL. In this case, PARMELA and elegant simulations of the full 250 MeV, high-gradient X-band linac provide the properties of the high brightness electron bunch. The electron beam simulations are then implemented into our newly developed weakly nonlinear Compton scattering code to produce theoretical gamma-ray spectra. The influence that the electron beam, laser beam and interaction geometry parameters have on the produced gamma-ray spectra will be shown with our simulations.
 
 
THYA02 Ultracompact Accelerator Technology for a Next-generation Gamma-Ray Source 3190
 
  • R.A. Marsh, F. Albert, S.G. Anderson, C.P.J. Barty, D.J. Gibson, F.V. Hartemann, S.S.Q. Wu
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
This presentation will report on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering X-ray Source under development at LLNL for homeland security applications.
 
slides icon Slides THYA02 [12.896 MB]