Paper | Title | Other Keywords | Page |
---|---|---|---|
THPEC045 | Electrostatic Separator and K1.8 Secondary Beamline at the J-PARC Hadron-Hall | kaon, proton, radiation, target | 4161 |
|
|||
In the hadron experimental hall at the 50-GeV Proton Synchrotron (PS) of J-PARC, the secondary beam line K1.8 with double stage separator is expected to provide 1-2 GeV/c kaon beams with less contamination of pions mainly for hadron and nuclear physics experiments with strangeness. An electrostatic (ES) separator is one of key elements of this secondary beam line. The ES separator will generate a 75kV/cm electrostatic field between parallel electrodes of 10cm gap and 6m in length along the beam direction. It is designed so as to be radiation-proof and to lower spark rate at the high intensity proton accelerator facility. The K1.8 line has two 6m ES separators with the intermediate focal point upstream of separators to reduce the pion backgrounds from the production target. The K-/π- ratio of the line is expected to have a larger value than 1 at the experimental target. Beam commissioning of the K1.8 has just started. We will report separator performance, optics design of the K1.8 beam line and the first result of the beam commissioning. |
|||
THPEC046 | Performance and Operational Experience of the CNGS Facility | target, proton, extraction, kaon | 4164 |
|
|||
The CNGS facility (CERN Neutrinos to Gran Sasso) aims at directly detecting muon to tau neutrino oscillations. An intense muon-neutrino beam (1017 muon neutrinos/day) is generated at CERN and directed over 732km towards the Gran Sasso National Laboratory, LNGS, in Italy, where two large and complex detectors, OPERA and ICARUS, are located. CNGS is the first long-baseline neutrino facility in which the measurement of the oscillation parameters is performed by observation of the tau-neutrino appearance. The facility is approved for a physics program of five years with a total of 22.5·1019 protons on target. Having resolved successfully some initial issues that occurred since its commissioning in 2006, the facility had its first complete year of physics in 2008. By the end of the 2009 physics run the facility will have delivered in total more than 5·1019 protons on target corresponding to ~2-3 tau neutrino events in the OPERA detector. The experiences gained in operating this 500 kW neutrino beam facility along with highlights of the beam performance in 2008 and 2009 are discussed. |
|||
THPEC065 | GEANT-4 Simulations of Secondary Positron Emitted Carbon Ion Beams | ion, target, positron, simulation | 4202 |
|
|||
The radioactive ion isotopes 11C6+, 10C6+ and others are produced at interaction of primary carbon ion beam with target. These isotopes can be applied for Positron Emission Tomography. The projectile-fragmentation method is used for the production of radioactive isotopes. The intensity of radioactive ion beam is defined by the target optimal thickness, material and by available longitudinal and transverse acceptances of transportation channel. An increase of target thickness permits to improve production rate of radioactive ion beams, however it increase the energy and angle spreads of secondary ions and finally it gives a reduction of number of useful radioactive ions which can be transported to the PET camera. The GEANT 4 simulations related to formation of 11C6+ secondary ion beams at interaction with different targets are discussed. |
|||
THPD052 | Manipulation of Negatively Charged Beams via Coherent Effects in Bent Crystals | scattering, alignment, simulation, antiproton | 4398 |
|
|||
New results in coherent interaction of negatively-charged particles with bent crystals showed unprecedentedly and significantly high efficiency to manipulate such beams, in the same way as for positively charged particles. Key feature under experimental attainment was the usage of high-quality suitably thin silicon crystals. We experimentally tested crystals Vs. 150 GeV negative pions at external lines of CERN SPS. We observed planar channeling at full deflection angle 30% high single-pass efficiency and large acceptance (about 20μrad). Moreover in the axial case, we reached more than 90% deflection efficiency and larger acceptance (about 60μrad). We also observed volume reflection in a bent crystal, at more than 70% single-pass efficiency with such a wide acceptance as the bending angle. At last, volume reflection by several planes in a single bent crystal was successfully tested with very high efficiency (about 80%). In summary both channeling and volume reflection modes appear to be useful technique for the manipulation of negatively charged beams, e.g. for collimation in the new generation of high intensity accelerators. The UA9 collaboration |