Author: Lee, J.H.
Paper Title Page
TUAPL01 MicroTCA Generic Data Acquisition Systems at ESS 118
 
  • S. Farina, J.H. Lee, J.P.S. Martins, D.P. Piso
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a Partnership of 17 European Nations committed to the goal of collectively building and operating the world's leading facility for research by use of neutrons by the second quarter of the 21st Century. The strive for innovation and the challenges that need to be overcome in order to achieve the requested performances pushed towards the adoption of one of the newest standards available on the market. ESS has decided to use MicroTCA as standard platform for the systems that require high data throughput and high uptime. The implications of this choice on the architecture of the systems will be described with emphasis on the data acquisition electronics.  
video icon Talk as video stream: https://youtu.be/warsqk8bwJs  
slides icon Slides TUAPL01 [1.663 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUAPL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA088 Timing System at ESS 618
 
  • J. Cereijo García, T. Korhonen, J.H. Lee
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) timing system is based on the hardware developed by Micro-Research Finland (MRF). The main purposes of the timing system are: generation and distribution of synchronous clock signals and trigger events to the facility, providing a time base so that data from different systems can be time-correlated and synchronous transmission of beam-related data for for different subsystems of the facility. The timing system has a tree topology: one Event Generator (EVG) sends the events, clocks and data to an array of Event Receivers (EVRs) through an optical distribution layer (fan-out modules). The event clock frequency for ESS will be 88.0525 MHz, divided down from the bunch frequency of 352.21 MHz. An integer number of ticks of this clock will define the beam macro pulse full length, around 2.86 ms, with a repetition rate of 14 Hz. An active delay compensation mechanism will provide stability against long-term drifts. A novelty of ESS compared to other facilities is the use of the features provided by EVRs in uTCA form factor, such as trigger and clock distribution over the backplane. These EVRs are already being deployed in some systems and test stands.  
poster icon Poster TUPHA088 [3.033 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA067 EtherCAT based DAQ system at ESS 1536
 
  • J. Etxeberria, J.H. Lee
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a multi-disciplinary research facility based on what will be the world's most powerful-pulsed neutron source. The Integrated Control System Division (ICS) is responsible of defining and providing control systems for the ESS facility. This control system will be based on the EPICS and it must be high performance, cost-efficient, safe, reliable and easily maintainable. At the same time there is a strong need for standardization. To fulfill these requirements ICS has chosen different hardware platforms, like MicroTCA, PLC, EtherCAT, etc. EtherCAT, a Ethernet-based real-time fieldbus will be analyzed, and different questions will be answered: -Why has EtherCAT been chosen? -In which cases is it deployed? -How is it integrated into EPICS? -What is the installation process? Along with data acquisition purposes, the ESS Motion Control and Automation Group decided to use EtherCAT hardware to develop an Open Source EtherCAT Master Motion Controller, for the control of all the actuators of the accelerator within the ESS project. Hence, an overview of the open Source Motion Controller and its integration in EPICS will be also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA133 MicroTCA.4 Integration at ESS: From the Front-End Electronics to the EPICS OPI 1692
 
  • J.P.S. Martins, S. Farina, J.H. Lee, D.P. Piso
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a collaboration of 17 European countries that is building a leading neutron research center in Lund, Sweden. The ESS facility will have the most powerful neutron source in the world, providing 5 MW of beam power. The Integrated Control Systems Division (ICS) is responsible for all the control systems for the whole facility. For the accelerator control system, ICS will provide different hardware platforms according to the requirements of each specific system. For high performance systems, demanding high data throughput, the hardware platform is the MicroTCA.4 standard. This work presents the software stack that makes the integration of a high-end MicroTCA.4 hardware into the ESS Control System, with the implementation details of the FPGA firmware framework, kernel and userspace drivers, EPICS device support and finally the EPICS IOC that controls the MicroTCA.4 boards.  
poster icon Poster THPHA133 [2.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)