Author: Kalantari, B.
Paper Title Page
MOAPL04 SwissFEL Control System - Overview, Status, and Lessons Learned 19
 
  • E. Zimoch, A.D. Alarcon, D. Anicic, A.G. Bertrand, R. Biffiger, K. Bitterli, M. Boccioli, H. Brands, P. Bucher, T. Celcer, P. Chevtsov, E.J. Divall, S.G. Ebner, M. Gasche, F. Haemmerli, C.E. Higgs, T. Humar, M. Janousch, G. Janser, G. Jud, B. Kalantari, R. Kapeller, R.A. Krempaská, D.J. Lauk, M.P. Laznovsky, H. Lutz, D. Maier-Manojlovic, F. Märki, V. Ovinnikov, T. Pal, W. Portmann, S.G. Rees, T. Zamofing, C. Zellweger, D. Zimoch
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL is a new free electron laser facility at the Paul Scherrer Institute (PSI) in Switzerland. Commissioning started in 2016 and resulted in first lasing in December 2016 (albeit not on the design energy). In 2017, the commissioning continued and will result in the first pilot experiments at the end of the year. The close interaction of experiment and accelerator components as well as the pulsed electron beam required a well thought out integration of the control system including some new concepts and layouts. This paper presents the current status of the control system together with some lessons learned.  
video icon Talk as video stream: https://youtu.be/oaGDyYYzKJ4  
slides icon Slides MOAPL04 [2.258 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-MOAPL04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCPL04 SwissFEL Timing System: First Operational Experience 232
 
  • B. Kalantari, R. Biffiger
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL timing system builds on MRF's event system products. Performance and functional requirements have pushed MRF timing components to its newest generation (300 series) providing active delay compensation, conditional sequence events, and topology identification among others. However, employing available hardware functionalities to implement complex and varying operational demands and provide them in the control system has its own challenges. After a brief introduction to the new MRF hardware this paper describes operational aspects of the SwissFEL timing and related control system applications. We describe a new technique for beam rate control and how this scheme is used for the machine protection system (MPS). We show how a well thought modular software-side design enables us to maintain various rep rates across the facility and allows us to implement complex triggering patterns with minimum development effort. We also discuss our timestamping method and its interface to the beam synchronous data acquisition system. Further we share our experience in timing network installation, monitoring and maintenance issues during commissioning phase of the facility.  
video icon Talk as video stream: https://youtu.be/CWx8QBpSxXc  
slides icon Slides TUCPL04 [5.381 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUCPL04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCPA06 SwissFEL - Beam Synchronous Data Acquisition - The First Year 276
 
  • S.G. Ebner, H. Brands, B. Kalantari, R. Kapeller, F. Märki, L. Sala, C. Zellweger
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL beam-synchronous data-acquisition system is based on several novel concepts and technologies. It is targeted on immediate data availability and online processing and is capable of assembling an overall data view of the whole machine, thanks to its distributed and scalable back-end. Load on data sources is reduced by immediately streaming data as soon as it becomes available. The streaming technology used provides load balancing and fail-over by design. Data channels from various sources can be efficiently aggregated and combined into new data streams for immediate online monitoring, data analysis and processing. The system is dynamically configurable, various acquisition frequencies can be enabled, and data can be kept for a defined time window. All data is available and accessible enabling advanced pattern detection and correlation during acquisition time. Accessing the data in a code-agnostic way is also possible through the same REST API that is used by the web-frontend. We will give an overview of the design and specialities of the system as well as talk about the findings and problems we faced during machine commissioning.  
slides icon Slides TUCPA06 [5.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUCPA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)