Paper |
Title |
Page |
TUPHA044 |
Integration of the Vacuum Scada With CERN's Enterprise Asset Management System |
490 |
|
- A.P. Rocha, S. Blanchard, J. Fraga, G. Gkioka, P. Gomes, L.A. Gonzalez, T. Krastev, G. Riddone, D. Widegren
CERN, Geneva, Switzerland
|
|
|
The vacuum group is responsible for the operation and consolidation of vacuum systems across all CERN accelerators. Concerning over 15 000 pieces of control equipment, the maintenance management requires the usage of an Enterprise Asset Management system (EAM), where the life-cycle of every individual equipment is managed from reception through decommissioning. On vacuum SCADA, the operators monitor and interact with equipment that were declared in the vacuum database (vacDB). The creation of work orders and the follow up of the equipment is done through inforEAM, which has its own database. These two databases need to be coupled, so that equipment accessible on the SCADA are available in inforEAM for maintenance management. This paper describes the underlying architecture and technologies behind vacDM, a web application that ensures the consistency between vacDB and inforEAM, thus guaranteeing that the equipment displayed in the vacuum SCADA is available in inforEAM. In addition to this, vacDM performs the management of equipment labelling jobs by assigning equipment codes to new equipment, and by automatically creating their corresponding assets in inforEAM.
|
|
|
Poster TUPHA044 [1.138 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA044
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPHA144 |
Industrial Stepping Motors Integration in the UNICOS-CPC Framework |
1720 |
|
- J. Fernandez Cortes, E. Blanco Viñuela, L.A. Gonzalez
CERN, Geneva, Switzerland
|
|
|
A large number of movable devices are present in the field of accelerators and must often be integrated in a control system. Typical examples of these systems are phase shifters and magnetic dipoles among others. The standard industrial control system UNICOS-CPC (UNified Industrial COntrol System for Continuous Process Control) provides a set of generic device types which matches the majority of the industrial equipment employed in process control. This new development extends it with additional device types for precise positioning equipment based on stepping motors. The paper focuses on how the integration on UNICOS was fulfilled, the potential use of the solution and the automatic integration with the CERN real-time FESA (FrontEnd Software Architecture) framework. Finally, it illustrates a couple of use cases that already incorporate the solution: the CTF3 facility, the two-beam acceleration scheme envisioned for CLIC (Compact Linear Collider) and the EuroCirCol project for the measurements of the beam screen prototype for the FCC-hh (Future Circular Collider proton-proton).
|
|
|
Poster THPHA144 [1.201 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA144
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|