Keyword: background
Paper Title Other Keywords Page
WEPGF083 Single Neutron Counting Using CCD and CMOS Cameras neutron, detector, electron, simulation 889
 
  • P. Mutti, M. Plaz, E. Ruiz-Martinez, P. Van Esch
    ILL, Grenoble, France
  • M. Crisanti
    Università degli di Perugia, Perugia, Italy
 
  Neutron detection traditionally takes place with detectors based upon particle detection technologies like gas or scintillation detections. These detectors have a high dynamic range, and are very performing at low counting rates and fast timing (time of flight) applications. At high counting rates however, continuous imaging detectors such as CCD or CMOS camera's optically linked to scintillators, can have very good performances concerning linearity and spatial resolution but the dynamic range of these systems is limited by noise and gamma background. We explore a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher rates. Neutron detection involves reactions releasing energies of the order of the MeV, while X-ray detection releases energies of the order of the photon energy, (10 KeV range). This 100-fold higher energy allows the individual neutron detection light signal to be significantly above the noise level, as such allowing for discrimination and individual counting. The theory is next confronted with experimental measurements on CCD and CMOS type commercial cameras.  
poster icon Poster WEPGF083 [7.979 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF092 PLCverif: A Tool to Verify PLC Programs Based on Model Checking Techniques PLC, software, controls, framework 911
 
  • D. Darvas, E. Blanco Vinuela, B. Fernández Adiego
    CERN, Geneva, Switzerland
 
  Model checking is a promising formal verification method to complement testing in order to improve the quality of PLC programs. However, its application typically needs deep expertise in formal methods. To overcome this problem, we introduce PLCverif, a tool that builds on our verification methodology and hides all the formal verification-related difficulties from the user, including model construction, model reduction and requirement formalisation. The goal of this tool is to make model checking accessible to the developers of the PLC programs. Currently, PLCverif supports the verification of PLC code written in ST (Structured Text), but it is open to other languages defined in IEC 61131-3. The tool can be easily extended by adding new model checkers.  
poster icon Poster WEPGF092 [3.550 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF146 GUI Style Guide for Control System Applications at ESS GUI, controls, software, EPICS 1047
 
  • F. Amand, M. Pavleski, M. Pleško
    Cosylab, Ljubljana, Slovenia
  • L. Fernandez
    ESS, Lund, Sweden
 
  To help developers create consistent-looking control system application GUIs, the European Spallation Source Integrated Control Systems group asked Cosylab to develop a Style Guide document. Its purpose is to avoid that GUIs needlessly diverge and make the end-result of all screens combined look harmonious, even if GUIs have been developed over several years by many contributors. Also it will speed up development, by letting developers start from design patterns, rather than starting "from a blank page". The document defines a set of basic panel sizes, containing a 960px-style grid for consistent organization of content. It also defines color scheme and font usage, in-line with the overall ESS corporate communications manual, with the addition of signal colors. In addition it shows example screens to serve as GUI design patterns for typical screen types such as engineering screens, control applications and synoptic screens. It concludes by setting rules and recommendations for the usage of automation symbols and display of engineering and physical units. The document is further complemented by a separate document with Usability Guidelines for Human-Machine interfaces.  
poster icon Poster WEPGF146 [1.866 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)