
PLCverif: A Tool to Verify PLC Programs
Based on Model Checking Techniques

D. Darvas, B. Fernández Adiego, E. Blanco Viñuela, CERN, Geneva, Switzerland
daniel.darvas@cern.ch | borja.fernandez.adiego@cern.ch | enrique.blanco@cern.ch

You can find this poster, the paper and more information at

http://go.cern.ch/x8vH
http://cern.ch/plcverif

Motivation

Workflow

Experiences

1) Introducing the code

2) Defining the requirement

4) Report & analysis

 Source code can be imported or locally edited

 Supported languages: ST/SCL, IL/STL (partially), SFC (partially)

 Included ST/SCL editor with syntax highlighting, content assist,
refactoring support, etc.

 A verification case contains all necessary information:
metadata and the requirement

 It is difficult to use temporal logics for the non-expert users.
Instead, a verification pattern has to be chosen from a pre-
defined list and filled with simple expressions

 The output of the model checker is not easy to understand

 A verification report summarizes the outcome of the
verification for the user in an intuitive way

 If the requirement is not satisfied, the counterexample shows an
example for the violation

 Based on the counterexample, the violation can be reached in a
controlled way or the corresponding part of the implementation
can be analysed

Testing is not good for everything Model checking can complement But...

 Not feasible to test all combinations,
only some selected input sequences are checked

 Testing cannot show the absence of bugs,
it can only show their presence

Model checking: analysing whether a formal system model
satisfies the given formal requirements. It may…
 … check all possible combinations

 … prove the absence of bugs

 … give a counterexample if the requirement is violated

 Model checking typically needs special expertise to
produce the formal models and requirements

 It has a high computational complexity

Our goal is to overcome these issues and to make
model checking accessible to the PLC developers.

If …. (at the end of a PLC cycle),

then ….. is always true (at the end of the same cycle).
Pattern

Expressions

Formal
requirement
(used internally)

?

?

out_restartAllowed = false

out_InterlockNotAcknowledged=true AND

PRestartAllowedDuringInterlock=false

CTLSPEC AG((PLC_END & ($instance/out_interlocknotacknowledged$ =

TRUE & $instance/prestartallowedduringinterlock$ = FALSE)) -> ($instance/

out_restartallowed$ = FALSE))

Example

Conclusions

Example

The counterexample shows a violation:

out_InterlockNotAcknowledged=true and PRestartAllowedDuringInterlock=false,
but out_restartAllowed = true.

Based on that the problem can be reproduced.

The source of violation can be found in the implementation:
a pair of parentheses is missing from the expression.

A tool was developed to implement our methodology and hide the complexity from the
user: PLCverif (http://cern.ch/plcverif/)

 Problems were found in well-tested modules of the UNICOS framework

 PLCverif was applied in the development of a new safety-critical control system,
giving continuous feedback and ~15 bug reports to the developers

– It would have been practically impossible to find many of these bugs using testing

– PLCverif provided feedback on code before deployment – lower correction cost

 A tool hiding the complexity can help to integrate formal verification to the
development process

 Model reductions make the model size smaller, thus the verification feasible

 Model checking can complement testing of industrial control software

 Testing is still needed: model checking is not universally applicable

 More work is needed in the future:
– Better algorithms (to increase the set of verifiable problems)
– Better specification methods (to have unambiguous requirements)
– Better tool (to support more languages)

Example

WEPGF092

3) Verification: Model checking
Steps performed:

1. The PLC code is parsed and translated into a verification model

2. The pattern-based requirement is translated into a formal, mathematical
requirement description format (temporal logics: CTL or LTL)

3. The verification model is reduced

4. The verification model is translated to the external model checker’s format

5. The model checker tool is executed and its result is parsed
(Currently included model checkers: nuXmv, NuSMV, UPPAAL, BIP)

Intermediate
model

Model checker’s
representation

PLC source
code

Requirement



Counter-
example

Model
reductions

Fully automated

Model
checker

	icalepcs_toolpaper_poster.vsdx
	Page-1

