PLCverif: A Tool to Verify PLC Programs
Based on Model Checking Techniques

v, 2015
% ICALEPCS

melbourne ¢ australia

D. Darvas, B. Fernandez Adiego, E. Blanco Vinuela, CERN, Geneva, Switzerland
daniel.darvas@cern.ch | borja.fernandez.adiego@cern.ch | enrique.blanco@cern.ch

Motivation

Testing is not good for everything Model checking can complement But...
e Not feasible to test all combinations, Model checking: analysing whether a formal system model e Model checking typically needs special expertise to
only some selected input sequences are checked satisties the given formal requirements. It may... produce the formal models and requirements
e Testing cannot show the absence of bugs, * ... checkall possible combinations e It has a high computational complexity
it can only show their presence ° e PTOVE the absence of bqgs . . Our goal is to overcome these issues and to make
e ... give a counterexample if the requirement is violated model checking accessible to the PLC developers
IF in_Acknowledge THEN
o B PLovert =) Example out_InterlockNotAcknowledged := FALSE;
n t ro u C] n g t e Co e D out_AlarmUnacknowledged := FALSE;
2 Project = g A “InteriockHandingad 3 =o e ELSIF in_Interlock THEN
st W vk mwor L reerlockHandLing 'EH out_AlarmUnacknowledged := TRUE;
e Source code can be imported or locally edited i e I ntariocks Boots 5 END_IF;
’aniliﬁfii:wng.sd e o interlock : B00Ls = IF (in_Restart AND NOT in_ Interlock) OR
e Supported languages: ST/SCL, IL/STL (partially), SEC (partially) T = (PReStiflrtliltle‘;‘iﬂ';rmglnterl"Ck AND in_Restart AND
. : SR TIE I : L o plamnacioonedsed sl AND NOT out_InterlockNotAcknowledged THEN
e Included ST/SCL editor with syntax highlighting, content assist, j i out RestartAllomed o TRUR. o E€
refactoring support, etc. ~ 15 in Acknouledge THEN— sl L
tf\lt e e, IF in_Interlock THEN
ELSIFi_{t rloc ETHde o ., out_InterlockNotAcknowledged := TRUE;
J CAlarmnackne — out RestartAllowed := FALSE;
. END_IF;
Example
2) Defining the requirement pater [t endof PLC yc)
e then [RBMNl is always true (at the end of the same cycle).
e . . . ﬁﬁﬁﬁﬂhthﬁﬁ? %&ﬂﬂ%ﬁ el mpreseneed -
e A verification case contains all necessary information: CesBn: sethedocumentaio: g samplecom/documenttonntaockSecton? Expressions ou;éntetrlﬁ)tzlﬁNot,ﬁacgnqwlefelcl tkr:? f‘ND
metadata and the requirement p— _es T
e Itis difficult to use temporal logics for the non-expert users. e pter (L g o o e LE i T o e o eame e 5
Instead, a verification pattern has to be chosen from a pre- e e, Formal -
: : : - : . S ! CTLSPEC AG((PLC_END & ($instance/out_interlocknotacknowledged$ =
deflned 1].St and fll].ed Wlth Slmple expl‘eSSIOIlS AND PRestartAllowedDuringInterlock=false is true at the end of the same cycle. ledged requ".ement TRUE & $instance/prestaﬂalloWedduringinl‘ef/OCk$ = FALSE)) > ($in3tance/
ification: Model checki Model
3) Verification: Model checking ode
reductions Model
ode
Steps performed: PLC source - b elhar ‘/
1. The PLC code is parsed and translated into a verification model code s
2. The pattern-based requirement is translated into a formal, mathematical Intermediate Model checker’s
requirement description format (temporal logics: CTL or LTL) model representation
3. The verification model is reduced .
4. The verification model is translated to the external model checker’s format Requirement
5. The model checker tool is executed and its result is parsed
(Currently included model checkers: nuXmv, NuSMV, UPPAAL, BIP) ~ Fully automated 7
. | — Example
4 Re o rt & a n a l S.I S PLCverif — Verification report
p y Generated at Fri Feb 06 09:31:43 CET 2015 | FLCverif v2.0.1 | (C) CERN EN-ICE-FLC | Showhide expert delails The Counterexample ShOWS a Violation:
ID: INTLCK-01

e The output of the model checker is not easy to understand
e A verification report summarizes the outcome of the
verification for the user in an intuitive way

example for the violation

can be analysed

e [f the requirement is not satisfied, the counterexample shows an

¢ Based on the counterexample, the violation can be reached in a
controlled way or the corresponding part of the implementation rout_in_Acknowdge FALSE FALSE

Name: Restart disallowed if interlock is not acknowledged

Description: |If the interlock is not acknowledged and restarting the object is not allowed in
presence of an interlock, then the "restart allowed" output should be false.

See the documentation: http:/example.com/documentation/Interlock/#Section2

Source file: |InterlockHandling.scl

Requirement: | 1. out RestartAllowed = false is always true at the end of the PLC cycle, if
out InterdockMotAcknowledged=true AND PRestartAllowedDuringlnterlock=false is
true at the end of the same cycle.

Result:

Tool: nuxmv
Total runtime (until getting the verification results): 552 ms

Counterexample

End of End of
Cycle 1 Cycle 2

\ariable
fnput |in_Interlock TRUE FALSE
input |in_Restart FALSE TRUE
input | PRestartAllowedDuringinterlock FALSE FALSE
Ouviput| out_InterlockNotAcknowledged TRUE TRUE

out_InterlockNotAcknowledged=true and PRestartAllowedDuringInterlock=false,
but out_restartAllowed = true.

Based on that the problem can be reproduced.

The source of violation can be found in the implementation:
a pair of parentheses is missing from the expression.

IF

(PRestartAllowedDuripgInterlock AND in Restart AND

AND NOT out_InterlockNotAcknowledged THEN

in Restart AND NOT in_Interlock) OR

in Interlock)

Output out_RestartAllowed FALSE TRUE O'th _ReSt a.rtAllowed . = TRUE ;
Show/hide more details END IF;
A tool was developed to implement our methodology and hide the complexity from the e A tool hiding the complexity can help to integrate formal verification to the
user: PLCverif (http:;/cern.ch/plcverif/) development process
¢ Model reductions make the model size smaller, thus the verification feasible
e Problems were found in well-tested modules of the UNICOS framework e Model checking can complement testing of industrial control software
e PLCyverif was applied in the development of a new safety-critical control system, e Testing is still needed: model checking is not universally applicable
giving continuous feedback and ~15 bug reports to the developers
- It would have been practically impossible to find many of these bugs using testing e More work is needed in the tuture:
. . : - Better algorithms (to increase the set of verifiable problems)
- PLCverif provided feedback on code before deployment - lower correction cost e , ,
- Better specification methods (to have unambiguous requirements)
- Better tool (to support more languages)

You can find this poster, the paper and more information at

http://go.cern.ch/x8vH
http://cern.ch/plcverif

& | @

NAL S ENGINEERING
DEPARTMENT

	icalepcs_toolpaper_poster.vsdx
	Page-1

