Author: Slabber, M.J.
Paper Title Page
WEPGF065 Illustrate the Flow of Monitoring Data through the MeerKAT Telescope Control Software 849
 
  • M.J. Slabber, M.T. Ockards
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
 
  Funding: SKA-SA National Research Foundation (South Africa)
The MeerKAT telescope, under construction in South Africa, is comprised of a large set of elements. The elements expose various sensors to the Control and Monitoring (CAM) system, and the sampling strategy set by CAM per sensor varies from several samples a second to infrequent updates. This creates a substantial volume of sensor data that needs to be stored and made available for analysis. We depict the flow of sensor data through the CAM system, showing the various memory buffers, temporary disk storage and mechanisms to permanently store the data in HDF5 format on the network attached storage (NAS).
 
poster icon Poster WEPGF065 [1.380 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THHD3O06 Overview of the Monitoring Data Archive used on MeerKAT 1155
 
  • M.J. Slabber
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
 
  Funding: SKA South Africa National Research Foundation of South Africa Department of Science and Technology.
MeerKAT, the 64-receptor radio telescope being built in the Karoo, South Africa, by Square Kilometre Array South Africa (SKA SA), comprises a large number of components. All components are interfaced to the Control and Monitoring (CAM) system via the Karoo Array Telescope Communication Protocol (KATCP). KATCP is used extensively for internal communications between CAM components and other subsystems. A KATCP interface exposes requests and sensors. Sampling strategies are set on sensors, ranging from several updates per second to infrequent updates. The sensor samples are of multiple types, from small integers to text fields. As the various components react to user input and sensor samples, the samples with timestamps need to be permanently stored and made available for scientists, engineers and operators to query and analyse. This paper present how the storage infrastructure (dubbed Katstore) manages the volume, velocity and variety of this data. Katstore is comprised of several stages of data collection and transportation. The stages move the data from monitoring nodes to storage node to permanent storage to offsite storage. Additional information (e.g. type, description, units) about each sensor is stored with the samples.
 
slides icon Slides THHD3O06 [29.051 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)