
OVERVIEW OF THE MONITORING DATA ARCHIVE USED ON MeerKAT

M. Slabber∗, SKA SA, Cape Town, South Africa

Abstract

MeerKAT [1], the 64-receptor radio telescope being built

in the Karoo, South Africa, by Square Kilometre Array South

Africa (SKA SA), comprises a large number of components.

All components are interfaced to the Control and Monitoring

(CAM) system via the Karoo Array Telescope Communi-

cation Protocol (KATCP). KATCP is used extensively for

internal communications between CAM components and

other subsystems [2]. A KATCP interface exposes requests

and sensors [3]. Sampling strategies are set on sensors, rang-

ing from several updates per second to infrequent updates.

The sensor samples are of multiple types, from small inte-

gers to text fields. As the various components react to user

input and sensor samples, the samples with timestamps need

to be permanently stored and made available for scientists,

engineers and operators to query and analyse. This paper

present how the storage infrastructure (dubbed Katstore)

manages the volume, velocity and variety of this data. Kat-

store is comprised of several stages of data collection and

transportation. The stages move the data from monitoring

nodes to storage node to permanent storage to offsite storage.

Additional information (e.g. type, description, units) about

each sensor is stored with the samples.

INTRODUCTION

On each node in the CAM system a monitoring process

is responsible for collecting sensor samples for storage. The

monitor process communicates with the proxy processes

that, in turn, communicate directly with the devices and

other systems. The rates at which the monitor processes

collect these samples are configured upfront in the central

configuration system.

A sample consists of the sensor name, sample timestamp,

value timestamp, status and value.

Sample timestamp is the time at which the CAM system

received the sample reading from the sensor. The value

timestamp is the time at which the acquisition was performed

on the sensor and the value stored. The status field holds

the status of the sensor. Timestamps are represented as the

time in seconds since the epoch of 1 January 1970 00:00:00

UTC.

The sensor sample storage system is responsible for col-

lecting the samples from the monitor processes. The storage

system transports the samples to a central storage node from

where they can be queried and archived.

∗ martin@ska.ac.za

ARCHITECTURE

The storage system is comprised out of several elements

(Fig. 1). Each element performs a specific task.

Figure 1: Connections between elements of the storage sys-

tem.

Memory Buffer

Redis [4], an open source memory database server, is

installed on each of the CAM nodes. Redis acts as a buffer

to which the monitor process on the node writes sensor

samples. On startup and at intervals, the monitor process

will write metadata (e.g. type, unit of measure, description

etc.) of the sensors to Redis. Internal to the monitor process,

a class was developed to manage the writing to the memory

database. This cache update class (CUP) runs in its own

thread.

Pull Daemon - Pulld

A set of processes on the storage node pulls the sam-

ples and metadata out of Redis and stores it into the cen-

tral database. These processes are collectively called Pulld.

On a scheduled basis (currently daily), Pulld analyses the

Proceedings of ICALEPCS2015, Melbourne, Australia THHD3O06

Control System Infrastructure

ISBN 978-3-95450-148-9

1155 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

database and samples older than a configured age (currently

2 days) are archived. Pulld starts up a separate process

(pull_handler) for each Redis instance in the system. The

pull_handler processes are managed by a parent process

called pulld_manager. The pull_handler keeps a connection

open to Redis and moves samples from there into the central

database.

HDF Server

Samples to be archived, along with the relevant metadata

of the sensors, are sent to the HDF Server process. HDF

Server stores the samples into HDF5 formatted [5] files on

the Network Attached Storage (NAS). A new file is created

per day, per component of the CAM system. Files are stored

in a hierarchical directory structure: a directory for each year

contains directories for each month; which, in turn contains

a directory for each day of the month. In this directory a

file per component is created. The date is added to the file

name to allow files to be copied and still maintain a unique

name. For example the samples from 07 March 2015 of the

subarray1 component will be archived to 2015/03/07/2015-

03-07_subarray1.h5. Metadata for all of the sensors related

to the samples in the file are also stored in the file.

Query Interfaces

Two independent interfaces were developed for applica-

tions, (e.g. Web GUI), components and other subsystems

to query the storage system. All samples can be accessed

through the query interfaces. The storage system is near

real-time and lags the actual sensors by less than 1 minute.

Archived samples (on the NAS in HDF5 files) are exposed in

the database as a table called samples_archived. This table is

a ‘foreign table’ in PostgreSQL parlance, and a foreign data

wrapper (FDW) was developed for the HDF Server interface.

This allows any archived sensor samples to be retrieved as

if it is a row in the database. This is naturally not as fast as

retrieving samples stored directly within the database sys-

tem, but the performance is sufficient. The query interfaces

use only the database API to access sensor samples, thus

making it possible to develop powerful capabilities for the

query interfaces in a few lines of Structured Query Language

(SQL).

One of the query interfaces is developed to use KATCP

as its access protocol. This interface is used by many of the

internal CAM components to get historical sensor data and

lists of sensor names. It provides filtering and produces the

result in a format ready to be consumed by the components.

This query interface runs on the storage node.

The second query interface runs on the portal node and

provides an HTTP REST [6] -compliant interface and uses

Javascript Object Notation (JSON) for encoding. This inter-

face is mostly used by the web based graphical user interface

(GUI). The GUI allows operators, scientists and engineers

to create plots of any historical sensor data. The users of the

GUI can search for sensor names using a regular expression

syntax.

PULL VS. PUSH STRATEGY

One of the key differences in the architecture compared to

other similar systems [7] is in the strategy used for moving

samples from the nodes to the central storage system.

In a push system when a sample is available the sample is

sent (pushed) to the central storage system. This is typically

done with a distributed queue or via direct connections to

the database.

In the architecture of the MeerKAT sensor samples storage

system, a much simpler pull strategy was selected. This

allows the monitoring processes and the storage systems to

be completely decoupled. The storage system only needs to

know the address of the memory buffer; it need not know

which sensors or sampling strategies are associated with a

monitoring process. This allows the important control and

monitoring activities of the CAM system to evolve over time

to best suit the telescope requirements, without needing to

alter the storage system. For the monitor process this results

in a very simple implementation that is unobtrusive and

extremely fast.

The pull_handler implementation is also fairly uncompli-

cated. Samples are retrieved from Redis in as large a batch

as possible and stored to the central database. Once the

samples are stored, pull_handler removes the samples from

Redis and retrieves another batch of samples. By batching

samples it is possible to attain a much higher transfer rate

and to balance the utilisation on the central database better.

There are multiple pull_handlers all writing to the database

in batches.

Another advantage of the decoupling of the components

is that the storage system and monitoring processes can be

restarted independently with no effect on one another. This

is advantageous at startup, when developing and for fault-

finding purposes.

CENTRAL DATABASE

PostgreSQL [8] is used for the central database. Many

other database management systems were considered, most

notably MongoDB [9] a NoSQL database system. It was

found that PostgreSQL suited the needs of the sensor samples

storage system best.

The pull_handlers write batches of samples to the database

using the COPY FROM command rather than INSERT. This

hits the SQL parser only once and thus write the samples

more efficiently.

Horizontal partitioning (sharding) is employed and sam-

ples are written to different tables. A shardkey is calculated

by taking the first part of a sensor name up to the separator

character "_". This shardkey has no logical meaning within

the CAM system and is only used within the database.

Child table creation in the partition is determined by three

parameters; which, are also used to build up the name of the

table.
1. A table contains only a days worth of samples.

2. A table is only associated with one shardkey.

3. A table is only associated with one pull_handler.

THHD3O06 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1156C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

Separating tables per day and per shardkey has the ad-

vantage that when samples have been archived and need to

be removed from the database, they are organised in such

a manner that the table can be dropped. Using the DROP

command is much less resource intensive and faster than

using the DELETE command over the same samples.

The chosen shardkey distributes the usage of the tables

so that only one pull_handler writes to a table. To guarantee

this, the internal ID of the pull_handler is used as part of the

table name. Thus there is no opportunity for write contention

on any of the child tables.

When a child table is created, constraints are placed on the

table. The shardkey and the minimum and maximum values

of the sample timestamps are used as the constraints. These

constraints help the database query parser to limit the tables

used when processing a query. Well-formed queries where

shardkey, minimum sample timestamp and maximum sam-

ple timestamp are given perform as well as if done directly

against a standard database table.

CONCLUSION

We conducted research into many different database man-

agement systems of different types. It was concluded that no

single system would fulfil all the requirements. A solution

based on using Redis database as a buffer on the nodes and

PostgreSQL as the central database was proposed, tested

and used in the final implementation. It was found that the

HDF5 file format was the preferred and most suitable format

for archiving the data.

A complete system was developed to move sensor samples

efficiently from the nodes where they were collected on to

the central storage node where the samples can be archived

and queried.

The system was designed in several independent compo-

nents. Each component is concerned with a specific function.

Thus while developing each component, it was possible to

focus exactly on solving the problem at hand. The compo-

nents make testing and fault finding easier. The components

will also make it easier to improve the performance of the

system as each component can be measured and improved

independently of the others.

REFERENCES

[1] R. S. Booth, W. J. G. de Blok, J. L. Jonas, and

B. Fanaroff, “MeerKAT Key Project Science, Specifications,

and Proposals,” ArXiv e-prints, pp. 1–16, 2009. [Online].

Available: http://arxiv.org/abs/0910.2935

[2] L. van den Heever, “MeerKAT Control And Monitoring - De-

sign Concepts and Status,” in Proceedings of ICALEPC 2013,

ser. MOCOAAB06, 2013.

[3] S. Cross, R. Crida, T. Bennett, M. Welz, and T. Kusel,

“Guidelines for Communication with Devices,” 2012. [On-

line]. Available: http://pythonhosted.org/katcp/_downloads/

NRF-KAT7-6.0-IFCE-002-Rev5.pdf

[4] “Redis homepage,” Sep. 2015. [Online]. Available: http:

//redis.io

[5] M. Folk, G. Heber, and Q. Koziol, “An overview of the HDF5

technology suite and its applications,” Proceedings of the

EDBT/ . . . , pp. 36–47, 2011.

[6] R. T. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” Ph.D. dissertation,

University of California, Irvine, 2000. [Online]. Available:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[7] T. Shen, R. Soto, P. Merino, L. Peña, A. Barrientos, M. Bartsch,

A. Aguirre, J. I. Alma, and A. D. Cordova, “Exploring No-SQL

alternatives for ALMA monitoring system,” in Proceedings of

ICALEPC 2013, ser. WECOBA06, 2013.

[8] “Postgresql homepage,” Sep. 2015. [Online]. Available:

http://www.postgresql.org

[9] “Mongodb homepage,” Sep. 2015. [Online]. Available:

http://www.mongodb.org

Proceedings of ICALEPCS2015, Melbourne, Australia THHD3O06

Control System Infrastructure

ISBN 978-3-95450-148-9

1157 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

