Author: Conway, J.V.
Paper Title Page
WEAL3 Diffraction Radiation Test at CesrTA for Non-Intercepting Micron-Scale Beam Size Measurement 619
  • L.M. Bobb, E. Bravin, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • T. Aumeyr, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • M.G. Billing, J.V. Conway
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb
    JAI, Egham, Surrey, United Kingdom
  Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarizes the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. DR can therefore be used to develop non-invasive diagnostic tools. To achieve the micron-scale resolution required to measure the transverse (vertical) beam size using incoherent DR in CLIC, DR in UV and X-ray spectral-range must be investigated. Experimental validation of such a scheme is ongoing at CesrTA at Cornell University, USA. Here we report on the test using 0.5 mm and 1 mm target apertures on a 2.1 GeV electron beam and 400 nm wavelength.  
slides icon Slides WEAL3 [2.893 MB]