Author: Bou Habib, S.
Paper Title Page
TUPC31 New Design of High Order Modes Electronics in MTCA.4 Standard for FLASH and the European XFEL 443
  • S. Bou Habib, A. Abramowicz
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • N. Baboi, H. Schlarb
    DESY, Hamburg, Germany
  At free-electron linear accelerators, various High Order Modes (HOM) - both monopole and dipole - are excited. Extensive studies at DESY have shown that monitoring and analysis of some of these modes can be used for different applications including Beam Position Monitors (BPMs) and the reduction of wake-fields, the measurement of the beam phase with-respect-to RF signal in cavities, and the measurement of cavity alignment in the 1.3 GHz cryo-modules. Three frequencies were chosen for further experiments: the 1.3 GHz base frequency from the klystron, the 1.7 GHz dipole mode and the 2.4 GHz monopole mode. In order to realize the monitoring and analysis requirements, very high resolution measurements in amplitude, phase and shape (time resolution) are required for all three frequencies simultaneously. In this paper, we present the new HOM electronics prototype including a microstrip and stripline RF tri-passband filter design and measurements and the specialized MTCA.4 Rear Transition Module for HOM measurements with an ultra-fast high-resolution AMC digitizer.  
poster icon Poster TUPC31 [1.226 MB]  
WEPC31 New Design of the 40 GHz Bunch Arrival Time Monitor Using MTCA.4 Electronics at FLASH and for the European XFEL 749
  • M.K. Czwalinna, C. Gerth, H. Schlarb
    DESY, Hamburg, Germany
  • S. Bou Habib
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • S. Korolczuk, J. Szewiński
    NCBJ, Świerk/Otwock, Poland
  • A. Kuhl
    Uni HH, Hamburg, Germany
  At free-electron lasers, today's pump-probe experiments and seeding schemes make high demands on the electron bunch timing stability with an arrival time jitter reduction down to the femtosecond level. At FLASH and the upcoming European XFEL, the bunch train structures with their high bunch repetition rates allow for an accurate intra-train stabilisation. To realise longitudinal beam-based feedbacks a reliable and precise arrival time detection over a broad range of bunch charges, which can even change from 1 nC down to 20 pC within a bunch train, is essential. Benefitting from the experience at FLASH, the current bunch arrival time monitors (BAMs), based on detection of RF signals from broad-band pick-ups by use of electro-optic modulators, are further developed to cope with the increased requirements. In this paper, we present the new BAM prototype, including an adapted electro-optical front-end and the latest development of the read-out electronics based on the MTCA.4 platform.