Author: Beutner, B.
Paper Title Page
MOBL1 Instrumentation and Results from the SwissFEL Injector Test Facility 12
 
  • R. Ischebeck, V.R. Arsov, S. Bettoni, B. Beutner, M.M. Dehler, A. Falone, F. Frei, I. Gorgisyan, Ye. Ivanisenko, P.N. Juranic, B. Keil, F. Löhl, G.L. Orlandi, M. Pedrozzi, P. Pollet, E. Prat, T. Schietinger, V. Schlott, B. Smit
    PSI, Villigen PSI, Switzerland
  • P. Peier
    DESY, Hamburg, Germany
 
  The SwissFEL Injector Test Facility (SITF) has been equipped with numerous prototype diagnostics (BPMs, screen monitors, wire scanners, optical synchrotron radiation monitor, compression (THz) monitor, bunch arrival time monitor, EO spectral decoding monitor, charge and loss monitor) specifically designed for the low charge SwissFEL operation modes. The design of the diagnostics systems and recent measurement results will be presented.  
slides icon Slides MOBL1 [35.165 MB]  
 
TUPF08 Characterization of Compressed Bunches in the SwissFEL Injector Test Facility 515
 
  • G.L. Orlandi, M. Aiba, F. Baerenbold, S. Bettoni, B. Beutner, H. Brands, P. Craievich, F. Frei, R. Ischebeck, E. Prat, T. Schietinger, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  The quality of the beam transverse emittance at the cathode and the uniformity of the longitudinal compression of the electron bunch are essential for the lasing efficiency of a Free Electron Laser. In SwissFEL the longitudinal compression of the electron beam is performed by means of two magnetic chicanes and an off-crest acceleration scheme. The curvature induced on the beam longitudinal phase-space during the compression can be compensated by means of an X-band cavity. The beam longitudinal phase-space can be experimentally characterized by means of a Transverse Deflecting Cavity (TDC) and a profile monitor in a dispersive section. Longitudinal phase-space measurements at the SwissFEL Injector Test Facility under compression with and without X-band linearizer are presented. In addition, energy spread measurements done by monitoring the Synchrotron Radiation (SR) emitted by the electron beam in the dispersive section of the chicane are shown. A comparison with numerical simulations is presented.  
 
WEBL3 Wake Field Monitors in a Multi Purpose X Band Accelerating Structure 634
 
  • M.M. Dehler, S. Bettoni, B. Beutner, G. De Michele
    PSI, Villigen PSI, Switzerland
  • G. De Michele
    EPFL, Lausanne, Switzerland
  • G. De Michele
    CERN, Geneva, Switzerland
 
  In a collaboration between CERN, PSI and Sincrotrone Trieste (ST), a series of four multipurpose X-band accelerating structures has been designed and fabricated. These feature integrated wake field monitors (WFMs), which are used to measure the alignment (offset and tilt) between structure and beam. One structure has recently been installed in the SwissFEL Injector Test facility (SITF) at PSI. The WFM front end electronics will be developed within the EuCard2 framework, so for the measurements described in this paper we used the raw WFM signals. We compare these measurements to the theoretical results obtained via an equivalent circuit model used in the design and numerical calculations. The beam tests show that by minimizing the WFM signals, the emittance dilution given by the transverse wakes, crucial because of the small aperture of the structure, is minimized as well.  
slides icon Slides WEBL3 [1.668 MB]  
 
WEPC36 Development of Electron Bunch Compression Monitors for SwissFEL 769
 
  • F. Frei, B. Beutner, I. Gorgisyan, R. Ischebeck, G.L. Orlandi, P. Peier, E. Prat, V. Schlott, B. Smit
    PSI, Villigen PSI, Switzerland
  • P. Peier
    DESY, Hamburg, Germany
 
  SwissFEL will be a hard x-ray fourth generation light source to be built at Paul Scherrer Institut (PSI), Switzerland. In SwissFEL the electron bunches will be produced with a length of 3ps and will then be compressed by a factor of more than 1000 down to a few fs in order to generate ultra short x-ray pulses. Therefore reliable, accurate and noninvasive longitudinal diagnostic is essential after each compressing stage. In order to meet the requirements of this machine, new monitors have to be developed. We will present recent results of setups that measure electro-magnetic radiation, namely edge, synchrotron and diffraction radiation, emitted by the electron bunches (far field, spectral domain). These monitors are tested in the SwissFEL Injector Test Facility. A state of the art S-band Transverse Deflecting Cavity together with a Screen Monitor is used for calibration.