PAUL SCHERRER INSTITUT

Instrumentation Activities at the SwissFEL Injector Test Facility Rasmus Ischebeck, for the SwissFEL Team

SwissFEL

- > SwissFEL: X-ray laser for hard X-rays (0.1 to 7 nm)
 - > Construction has started in the Würenlingen forest
 - > First user beam in summer 2017
- > SwissFEL features
 - > Normal-conducting linac with 100 Hz repetition rate
 - > Low slice emittance: 180 to 340 nm
 - > Two bunches for two beamlines (separated by 28 ns, Phase 2)
 - > Low charge: 10 to 200 pC
 - > Short bunches: 600 as to 30 fs
 - > Good stability: RF phase stability of 0.02°, achieved with solidstate modulators

Instrumentation at the SwissFEL Injector Test Facility

- > Beam Position Monitors
- > Charge Monitors
- > Profile Monitors
 - > Screen Monitors
 - > Wire Scanners
 - > Synchrotron Radiation Imager
- > Time-Resolved Measurements
 - > Arrival Time Monitor
 - > Compression Monitor
 - > Electro-Optical Monitor
 - > Transverse Deflecting Cavity
- > Optical Spectrum of Transition Radiation

Beam Position Monitors

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

Boris Keil, Dirk Lipka 4

Beam Position Monitors

- > Resolution determined by comparing three adjacent BPMs
- > 7 μm rms for charges between 5 and 1000 pC

Cavity Beam Position Monitors

> SwissFEL will use only cavity beam position monitors

TUPC25

- > The same electronics as for the European XFEL will be used
- > Sub-micrometer resolution has been demonstrated

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB Markus Stadler, Boris Keil 6

Position Measurement: Wakefield Monitor

- > Position in X band linearizing cavity is important to reduce effects of wake fields
 > Wake fields can be measured directly.
- > Wake fields can be measured directly

- > Outcoupling of wakefields at frequencies > 10 GHz requires special care in
 - > couplers
 - > cables
 - > data acquisition

Position Measurement: Wakefield Monitor

- > Measured signal as a function of offset, measured by resonant strip line BPMs
- > Observed offset compatible with mechanical alignment tolerances

Charge Monitors

- > Absolutely calibrated integrating current transformers
- > New and improved model shows superior noise at low charge
- > Resolution: 1% at 120 pC

Marquee Exhibitor Area

> Measurement of small

beams

- > Optical
 resolution
 (ISO 12233):
 8 µm
- Beam sizes
 down to
 10 µm
 measured

Transverse Profiles: Quadrupole Scan

Synchrotron Radiation Imager

Synchrotron Radiation Imager

Prototype Results - 250 MeV Injector Test Facility (SITF) COP TUPF08

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

Gian Luca Orlandi 15

Wire Scanners

- > SwissFEL version:
 - > Inserted at 45 $^{\circ}$ \rightarrow measurement of horizontal beam size possible
 - > Can be used in a quasi-parasitic mode

3 different pin positions ↔ 3 different Wire separations (8, 5 or 3.5 mm) ↔ 3 different scan time (for a fixed wire velocity)

Wire Scanners

- > Wire scannersinstalled at all screen stations > 100 MeV
- > Measurements performed with horizontal wire:
 - > Charge measurement before and after wire
 - > Using beam synchronous data acquisition for encoder and charge (BPMs)
 - > Comparison to OTR measurements

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

GL Orlandi, P Mohanmurthy 17

Instrumentation at the SwissFEL Injector Test Facility

- > Beam Position Monitors
- > Charge Monitors
- > Profile Monitors
 - > Screen Monitors
 - > Wire Scanners
 - > Synchrotron Radiation Imager
- > Time-Resolved Measurements
 - > Arrival Time Monitor
 - > Compression Monitor
 - > Electro-Optical Monitor
 - > Transverse Deflecting Cavity
- > Optical Spectrum of Transition Radiation

Time-Resolved Measurements

Bunch Arrival Monitor

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

Vladimir Arsov 20

Bunch Arrival Monitor

> Arrival time signal generated at pickup is transferred onto an electro-optical modulator

Bunch Arrival Monitor

- > Dependence of arrival time on gun phase
- > Resolution of BAM: 18 fs rms

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

C MOAL4

Form Factor Monitor

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB Peter Peier, Franziska Frei 23

Form Factor Monitor

Pyro signals compared to expected response

Form Factor Monitor

> New detector with improved signal-to-noise at 10 pC bunch charge SP WEPC36

Electro-Optical Monitor

Electro-Optical Monitor

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

WEPC37

Direct Streaking of the Electron Beam

- > Requires integrated transverse field of several MV
- > Use transverse deflecting RF structure, powered by klystron
- > Two-dimensional measurements possible

Rasmus Ischebeck > Instrumentation @ SwissFEL Injector Test Facility > IBIC 2013, Oxford, GB

10 ps

3-Dimensional Measurements

> Reconstruction from a series of 2-d measurements: Slice emittance

3–Dimensional Measurements

> Slice emittance measurement of a 1.3 pC beam

Instrumentation at the SwissFEL Injector Test Facility

- > Beam Position Monitors
- > Charge Monitors
- > Profile Monitors
 - > Screen Monitors
 - > Wire Scanners
 - > Synchrotron Radiation Imager
- > Time-Resolved Measurements
 - > Arrival Time Monitor
 - > Compression Monitor
 - > Electro-Optical Monitor
 - > Transverse Deflecting Cavity
- > Optical Spectrum of Transition Radiation

Optical Spectrum of Transition Radiation

Optical Spectrum of Transition Radiation

- > Experimental Setup in the SwissFEL Injector Test Facility
 - > Transition radiation from aluminum coated silicon screen
 - > Focusing with lens, now replaced by mirror
 - > Commercial spectrometer with wide spectral range from 320 to 700 THz

Optical Spectrum of Transition Radiation

Instrumentation Activities at the SwissFEL Injector Test Facility

Rasmus Ischebeck, for the SwissFEL Team

- > Thank you for slides, graphics, photos and plots provided by:
 - > Vladimir Arsov
 - > Simona Bettoni
 - > Bolko Beutner
 - > Micha Dehler
 - > Antonio Falone
 - > Franziska Frei
 - > Ishkhan Gorgisyan
 - > Yevgeniy Ivanisenko
 - > Boris Keil
 - > Florian Löhl
 - > Gian Luca Orlandi
 - > Marco Pedrozzi
 - > Peter Peier
 - > Patrick Pollet
 - > Eduard Prat
 - > Thomas Schietinger
 - > Volker Schlott
 - > Bennie Smit
 - > Markus Stadler
- > Slides available at: <u>http://people.web.psi.ch/ischebeck</u>

