Keyword: extraction
Paper Title Other Keywords Page
MOPA37 Reliable Beam-Intensity Control Technique at the HIMAC Synchrotron controls, synchrotron, ion, feedback 143
 
  • K. Mizushima, T. Furukawa, Y. Hara, Y. Iwata, K. Katagiri, K. Noda, S. Sato, T. Shirai
    NIRS, Chiba-shi, Japan
 
  The carbon-ion beam is slowly extracted from the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron using the third-order resonance with the RF-knockout method for scanned carbon-ion therapy. However, an overshoot of the beam spill at the start of extraction is often induced by a slight variation of the beam emittance in operation cycles. It brings dose hot spot inside the target volume, because the tolerable beam-intensity in scanning irradiation is low. We have added short extraction, called preliminary extraction, before irradiation in order to remove the uncontrollable spilled particles. During preliminary extraction, it is necessary to prevent the beam delivering to the patient. Therefore, a fast beam shutter on which an ionization chamber is mounted was developed, and it was installed in the extraction line. The fast shutter enables us to switch from preliminary extraction to irradiation within 100 ms, and the reliability of the beam-intensity control system was drastically improved by the preliminary extraction technique.  
 
MOPB53 Hartmann Screen and Wavefront Sensor System for Extracting Mirror at SSRF synchrotron, synchrotron-radiation, radiation, optics 191
 
  • J. Chen, Y.B. Leng, K.R. Ye
    SINAP, Shanghai, People's Republic of China
 
  A Be mirror was used to extract visible synchrotron radiation light from bending magnet at SSRF. The surface of mirror was deformed because of X-ray heat. A set of Hartmann Screen Test was used to measure the surface of the mirror. Another equipment named The Shack-Hartmann wavefront sensor system was introduced to get more precision data. The result of two kind of test match each other well.  
 
MOPB72 First Measurements with Coded Aperture X-ray Monitor at the ATF2 Extraction Line detector, optics, vacuum, coupling 237
 
  • J.W. Flanagan, A. Arinaga, H. Fukuma, H. Ikeda, T.M. Mitsuhashi
    KEK, Ibaraki, Japan
  • G.S. Varner
    University of Hawaii, Honolulu, HI, USA
 
  Funding: Kakenhi
The ATF2 extraction line is used as a test-bed for technologies needed for the ILC final-focus region. An x-ray extraction beam line has been constructed at the final upstream bend before the extraction line straight section, for development and testing of optics and readout systems for a coded aperture-based imaging system. The x-ray monitor is expected to eventually be able to measure single-shot vertical bunch sizes down to a few microns in size at its source location in the ATF2 extraction line. Preliminary scanned measurements have been made with beams in the ~15 micron range, and it is planned to make more measurements with further-tuned beam, and with fast read-out electronics. The details of the layout, expected performance, and preliminary measurement results will be presented.
 
 
MOPB78 Beam Spot Measurement using a Phosphor Screen for Carbon-Ion Therapy at NIRS alignment, ion, synchrotron, operation 256
 
  • K. Mizushima, T. Furukawa, Y. Hara, K. Katagiri, K. Noda, T. Shirai, E. Takeshita
    NIRS, Chiba-shi, Japan
 
  A two-dimensional beam imaging system with a terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) phosphor screen and high-speed charge coupled device (CCD) camera has been used to measure the beam spot for scanned carbon-ion therapy at National Institute of Radiological Sciences (NIRS). The system enables us to obtain one image of the beam spot every 20 milliseconds. The fluctuation of the unscanned-beam spot size and position was observed in the isocenter to verify the time stability of the delivered beam for scanning irradiation. The beam imaging system also functions as a beam alignment adjustment system by setting a steel sphere at the isocenter. For quality assurance, the beam alignment is routinely checked by observing a shadow of the steel sphere on the beam spot image, and it is confirmed that the misalignment of the beam is smaller than the tolerance of 0.5 mm.  
 
MOPB81 Residual Gas Ionization Profile Monitors in J-PARC Slow-extraction Beam Line electron, proton, radiation, vacuum 267
 
  • Y. Sato, A. Agari, E. Hirose, M. Ieiri, Y. Katoh, M. Minakawa, R. Muto, M. Naruki, S. Sawada, Y. Shirakabe, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba, Japan
  • H. Noumi
    RCNP, Osaka, Japan
 
  Residual gas ionization profile monitors (RGIPMs) working in 1 Pa pressure have been developed for high-intensity proton beam (maximum: 50GeV-15uA) at J-PARC slow-extraction beam line. The transverse beam profiles are measured by collecting electrons produced by ionization of 1 Pa residual gas. The electrons are guided to the segmented electrode with a uniform electrostatic field applied in the gap. A uniform magnetic field is applied parallel to the electric field to reduce diffusion of electrons travelling to the electrodes. Typical spatial resolution of the RGIPMs with a 10 cm gap, a 10 V/cm electrostatic field, and a 400 gauss magnetic field at center is 0.5 mm. The collected charge is integrated during every extraction period (typically 2 second in 6 second accelerator cycle). Subtracting background distributions measured during off-beam period, profile distributions are measured clearly. The 14 RGIPMs installed in the slow-extraction beam line are working stably for the 30 GeV-0.46 uA proton beam at current maximum. In this contribution, detailed specifications and performance of the present RGIPMs will be reported.  
 
TUPA02 Modernized of the Booster Synchrotron Diagnostics in the Taiwan Light Source booster, synchrotron, kicker, radiation 329
 
  • C.H. Kuo, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Light Source is an 1.5 GeV synchrotron based light source which dedicated almost 20 year ago. During several major and minor upgrades, the TLS operate in top-up mode. To provide a better operation of the injector for the TLS, several minor upgrade in diagnostics are proceed recently. Efforts of these upgrades and modifications will summary in this report.  
 
TUPB74 Diamond Mirrors for the SuperKEKB Synchtron Radiation Monitor simulation, synchrotron, synchrotron-radiation, radiation 515
 
  • J.W. Flanagan, A. Arinaga, H. Fukuma, H. Ikeda
    KEK, Ibaraki, Japan
 
  The SuperKEKB accelerator, a 40x luminosity upgrade to the KEKB accelerator, will be a high-current, low-emittance double ring collider. The beryllium primary extraction mirrors used for the synchrotron radiation monitors at KEKB suffered from heat distortion due to incident synchrotron radiation, leading to systematic changes in magnification with beam current and necessitating continuous monitoring and compensation of such distortions in order to correctly measure the beam sizes. The heat loads on the extraction mirrors will be higher at SuperKEKB, with heat-induced magnification changes up to 40% expected if the same mirrors were used as at KEKB. We are working on a design based on mirrors made of quasi-monocrystalline diamond, which has much higher heat conductance and a lower thermal expansion coefficient than beryllium. With such mirrors it is targeted to reduce the beam current-dependent magnification effects to the level of a few percent at SuperKEKB. Measurements of heat-induced deformations on fabricated prototype mirrors will be presented, along with comparisons with the results of numerical simulations.