Paper |
Title |
Page |
TUO1A01 |
The High Intensity/High Brightness Upgrade Program at CERN: Status and Challenges |
226 |
|
- S.S. Gilardoni, G. Arduini, T. Argyropoulos, S. Aumon, H. Bartosik, E. Benedetto, N. Biancacci, T. Bohl, J. Borburgh, C. Carli, F. Caspers, H. Damerau, J.F. Esteban Müller, V. Forte, R. Garoby, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, G. Iadarola, M. Meddahi, G. Métral, B. Mikulec, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, F. Schmidt, E.N. Shaposhnikova, R. Steerenberg, G. Sterbini, M. Taborelli, H. Timko, M. Vretenar, R. Wasef, C. Yin Vallgren, C. Zannini
CERN, Geneva, Switzerland
- G. Franchetti
GSI, Darmstadt, Germany
- M. Migliorati
University of Rome "La Sapienza", Rome, Italy
- A.Y. Molodozhentsev
J-PARC, KEK & JAEA, Ibaraki-ken, Japan
- M.T.F. Pivi
SLAC, Menlo Park, California, USA
- V.G. Vaccaro
Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
|
|
|
The future beam brilliance and intensities required by the HL-LHC (High-Luminosity LHC) project and for possible new neutrino production beams triggered a deep revision of the LHC injector performances. The analysis, progressing in the framework of the LHC Injectors Upgrade (LIU) projects, outlined major limitations mainly related to collective effects - space charge in PSB and PS, electron cloud driven and TMCI instabilities in the SPS, longitudinal coupled bunch instabilities in the PS for example - but also to the existing hardware capability to cope with beam instabilities and losses. A summary of the observations and simulation studies carried out so far, as well as the future ones, will be presented. The solution proposed to overcome the different limitations and the plans for their implementation will be also briefly reviewed.
|
|
|
Slides TUO1A01 [12.748 MB]
|
|
|
WEO1A02 |
LHC Impedance Model: Experience with High Intensity Operation in the LHC |
349 |
|
- B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, P. Baudrenghien, A. Bertarelli, C. Bracco, R. Bruce, X. Buffat, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, J.F. Esteban Müller, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, W. Herr, S. Jakobsen, R.J. Jones, G. Lanza, L. Lari, T. Mastoridis, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, T. Pieloni, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, R. Wasef, D. Wollmann
CERN, Geneva, Switzerland
- A.V. Burov
Fermilab, Batavia, USA
- S.M. White
BNL, Upton, Long Island, New York, USA
|
|
|
The CERN Large Hadron Collider (LHC) is now in luminosity production mode and has been pushing its performance in the past months by increasing the proton beam brightness, the collision energy and the machine availability. As a consequence, collective effects have started to become more and more visible and have effectively slowed down the performance increase of the machine. Among these collective effects, the interaction of brighter LHC bunches with the longitudinal and transverse impedance of the machine has been observed to generate beam induced heating and transverse instabilities since 2010. This contribution reviews the current LHC impedance model obtained from theory, simulations and bench measurements as well as a selection of measured effects with the LHC beam.
|
|
|
Slides WEO1A02 [7.991 MB]
|
|
|
WEO1B05 |
PTC-Orbit Studies for the CERN LHC Injectors Upgrade Project |
399 |
|
- A.Y. Molodozhentsev, E. Forest
KEK, Ibaraki, Japan
- G. Arduini, H. Bartosik, E. Benedetto, C. Carli, M. Fitterer, V. Forte, S.S. Gilardoni, M. Martini, N. Mounet, E. Métral, F. Schmidt, R. Wasef
CERN, Geneva, Switzerland
|
|
|
The future improvement of the beam brilliance and intensities required in the frame of the LIU (LHC Injectors Upgrade) project to reach the demands of the HL-LHC (High-Luminosity LHC) project triggered a comprehensive study of the combined effects of the space charge and the machine resonances for the CERN synchrotrons, which are the injector chain for LHC. In frame of this report we will summarize new features of the PTC-ORBIT code which allow the beam dynamics modeling in the LHC injectors taking into account the time variation of the machine parameters during the injection process. The measurements, obtained during recent MD companies, and simulations for the low-energy high-intensity beams, will be discussed.
|
|
|
Slides WEO1B05 [3.063 MB]
|
|
|