

HB2012

PTC-ORBIT Studies for the CERN LHC Injectors Upgrade Project

KEK: <u>A.Molodozhentsev</u>, E.Forest CERN: G. Arduini, H. Bartosik, E.Benedetto, C.Carli, V.Forte, M.Fitterer, S.Gilardoni, M.Martini, E.Metral, N.Mounet, F.Schmidt, R.Wasef

Outline

- Motivation
- Computational tools
- Space-charge' convergence study
- Machine study and the code benchmarking
- Dynamic' simulations of the Multi-turn injection for the CERN PS Booster
- Observation of the space charge effects for CERN PS and SPS
- Conceptual design of the CERN RCS

Motivation

> CERN LHC (25nsec) beam upgrade scenario (LIU request)

Post LS2 (2019): \rightarrow × 2.4 times in brightness for 25nsec

Motivation

Space charge detuning estimations for the LHC Injectors

- LINAC2 (p⁺ 50MeV) → LINAC4 (h⁻ 160MeV)
- PS Booster → W_{ini} = 160 MeV
 - ... very confident to run with $\Delta Q_v \approx -0.3$ (and reasonable hope for $\Delta Q_v \approx -0.36$)
- **PS** \rightarrow W_{ini} = 2 GeV
 - ... very confident to run with $\Delta Q_y \approx -0.26$ (with reasonable hope for $\Delta Q_y \approx -0.30$ with 180nsec long bunches)
 - SPS (Q20 lattice)
 - ... present assumption is to run with $\Delta Q_y \approx -0.15$
 - ... need to increase $\Delta Q_{y} \approx -(0.20 \dots 0.25)$

25 ns	PSB inj	PSB	extr/PS inj	PS extr/SPS inj	SPS extr/LHC inj	LHC top
Energy GeV		0.16	2	26	450	7000
Nb	1	1	1	72	288	2808
lb [e11 p+]	-	35.2	33.5	2.7	2.4	2.2
Ib in LHC [e11 p+]		2.9	2.8	2.7	2.4	2,2
Exyn [mm.mrad]		1,9	2.0	2.1	2,3	2.5

 $\begin{array}{l} B_f = 0.4 \rightarrow \Delta Q_y \approx -0.25 \\ B_f = 0.3 \rightarrow \Delta Q_y \approx -0.37 \end{array}$

Computational tools

Space-charge' convergence study

ORBIT(MPI) is the PIC code

 \rightarrow in particular, FFT Particle-In-Cell without (adapted grid) or with (fixed grid) the boundary

- \rightarrow Optimum set of the required parameters for the 'space-charge' model
- o ... avoid artificial emittance growth ('core' and 'halo' parts of the beam)
- o ... reasonable CPU time per the '1 turn' tracking
- o ... N_{mesh} (X&Y), N_{mp}, L_{bin}, N_{spch} should be optimized for beams with different parameters (LHC type or CNGS type)

Machine lattice:

 $PSB \rightarrow basic IDEAL lattice without any errors (static lattice)$ $PS \rightarrow basic IDEAL lattice \rightarrow NO any correctors$

SPS → basic IDEAL lattice

RCS → basic IDEAL lattice

PTC-ORBIT(MPI)

	Method	Lmax / N _{sp}	N _{mesh} (x=y)	$N_{macro} imes 10^3$	L _{bin}
PSB	Fixed grid	1m / 199	256	1000	128
	Adapted grid	1m / 199	64	500	128
PS	Fixed grid *	10m / 70	1024	250	128
SPS	Adapted grid	3.32m / 2688	64	200	128
RCS	Adapted grid	1m / 157	128	500	128
* 11. • 72					

* H: ± 73mm / V: ± 35mm

PTC-ORBIT(MPI)

LHC type beam

	Beam intensity ×10 ¹² ppb	Bunching factor	Tunes	Normalized emittances 1σ / π μm	Estimated ∆Q ^{INC} sc, v
PSB 160MeV LHC25	2.475 (1.5 nominal) (MTInj-20bl)	0.6 (r _c = 185ns) RF: 2 nd harmonic	4.26/4.43	3/2 official Excel datasheet	~-0.26
PS 1.4GeV LHC50	0.81 1.15	0.174 (T _F = 90ns) 0.35 (T _F = 180ns)	6.21/6.23	1.45/1.32 2.0/1.7	~ -0.26 ~ -0.23
SPS 26GeV	0.27	$0.5 (t_{\sigma} = 3 ns)$	20.15/20.23	2.1/2.1	~-0.16
RCS 160MeV	1.2×10 ¹² (1/2 nominal)	0.3	4.29/3.38	2.5/2.5	0.15

Space charge detuning for CERN PS-Booster (160MeV)

2D histogram $Q_H/Q_V=4.26/4.43$

Space-charge' convergence study

▶ RMS and 99% emittance evolution for different sets of the 'space charge' module of the code for the case of the lattice tunes $Q_H / Q_V = 4.26 / 4.43$ (CERN PS Booster)

RMS emittance evolution

PTC-ORBIT(MPI)

Evolution of the 'halo' part of the beam

Machine studies (MD-2012) and the PTC-ORBIT code benchmarking

Motivation:

 reproduce the measured beam evolution at 160MeV by the PTC-ORBIT tracking

Measured beam profile 'Tomoscope' image

Generated beam profile

Foot print $Q_{\rm H}/Q_{\rm V}$ =4.18/4.23

<u>LHC25 beam</u> B_f ~ 0.4

PTC-ORBIT(MPI)

Generated and measured transverse beam profile at the 160MeV energy

Machine studies (MD-2012) and the PTC-ORBIT code benchmarking

[1,0,4] resonance

2,-2,0] resonance

→Accuracy of the RMS emittance measurements should be improved ...

 \rightarrow ... taken into account the random error of the quadrupole strength of the PS Booster magnets

→ lattice with RANDOM errors {δK1}QM
 #1: 'ideal' lattice
 #2: 1Sigma = 1.0×10⁻³ (relative value)
 #3: 1Sigma = 5.0×10⁻³

\rightarrow ... including the random TILT of the PS Booster quadrupole magnets

Up to 1Sigma = 4.28×10^{-5} rad

Linear coupling of the PS Booster: $\Delta Q_{MIN} \approx 0.008$

Significant improvement of the efficiency of the MT injection by using the H⁻ stripping injection in the H-plane
 Control over both transverse emittances
 Effects of the edge-focusing of the 'slow' bump-magnets, changing during the chicane reduction

KSW Parameters

	LHC Beam	CNGS Beam
T1	94% I _{max}	71% I _{max}
12	92% I _{max}	$70\% I_{max}$
tl	7 us	10 us
t2	20 us	49 us
t _{fall}	35 us	64 us

Imax: current corresponding to a bump height at the foil of -35 mm

 Kicks for a 55 mm bump at the foil:

 KSWP16L1: 8.74 mrad
 →
 0.045 T

 KSWP1L4: 2.55 mrad
 →
 0.013 T

 KSWP1EL4: 8.74 mrad
 →
 0.045 T

Functions have to be defined for varying the dI/dt of the KSW during injection.

Different functions for different users → high flexibility is required

- □ Lattice tunes: $Q_H / Q_V = 4.28 / 4.45$ □ Q_V could be above 4.5 ...
- Compensation the V beta-beating effect
- → Active compensation scheme by using 2 independent families of quads
- \rightarrow Reduction of the V-beta beat: 35% \rightarrow 5%
- → Dynamic changing the quad strength during the chicane's fall from MAX (≈ -80mm) to ZERO

V beta-beating around CERN PS Booster: #1 – before; #2 – after the 'active' correction

PTC-ORBIT(MPI)

Double harmonic RF system with the longitudinal stacking of the bunches

Longitudinal painting

PTC-ORBIT(MPI)

- Further attenuation of space charge effects can be obtained by controlling the distribution, in phase space of injected particles
- Energy of the injected beam will be varied to fill the bucket with an equal density distribution.

Particle distribution after 5520t

PTC-ORBIT (space charge \rightarrow ON)

Capture efficiency ~ 98%, B_f ~ 0.6

Transverse emittance evolution (NO FOIL)

- V OFF-set (~3mm) to control the Vertical emittance
- > Space Charge effects \rightarrow ON (adapted grid) ... 35.2e10ppb
- > Incoherent space charge detuning < -0.5, Lattice tune $Q_H / Q_V = 4.27 / 4.58$

✓ Effects of FOIL, Aperture limitation, machine imperfections should be analyzed

PTC-ORBIT(MPI)

CERN PS: space charge effects and machine resonances

Tune scan at the energy 2.0GeV Typical tune-spread H,V ~(-0.18, -0.28)

S.Gilardoni talk

- Emittance growth near the [0,1,6] resonance has been studied experimentally ... for the code benchmarking
- ➢ Resonance Driving Terms:
 → 'pencil' beam (LHC-INDIV)
 → different horizontal kick strength

 'Realistic' machine description by using the measured field nonlinearities of the PS magnets in progress ... to reproduce the experimental observations.

CERN PS: space charge effects and machine resonances

'LHC-INDIV' beam

[1,-1,0] resonance observation

Observation of the [1,-1,0] resonance \rightarrow turn-by-turn data acquisition ...

Turn-by-Turn data analysis

CERN SPS: space charge effects and machine resonances

- Tune scan for the Q20 SPS optics at 26GeV
- Single bunch : 2.5-2.7e11 p/b
- Normalized RMS emittance: 1.2µm in both planes
- The incoherent space charge detuning: $\Delta Q_H \approx$ -0.15, $\Delta Q_V \approx$ -0.25.

H.Bartosik talk

RCS conceptual design

Motivations (including the space charge at injection):
alternative to the CERN PS Booster upgrade (160MeV-2GeV, 10Hz)
effect the beam envelope modulations on the emittance growth
effect of the super-periodicity

A.Molodozhentsev (KEK), ICFA HB12 workshop Beijing, China, September 17-21, 2012

Injection

Extraction

PTC-ORBIT(MPI)

- The performed benchmarking between the measured and simulated beam evolution for the CERN PS Booster at 160MeV shows very good agreement
- Optimization of main PS Booster setting has been performed to simulate the multi-turn injection process
- Data accumulation for the further study of the space charge effects for the LHC Injectors has been started to perform extensive simulations during the 'Shut-Down-1' period

HB2012

Institute of High Energy Physics, Beijing September 17-21, 2012

Thanks for your attention

