Author: Valentino, G.
Paper Title Page
MOP242 Experimental Verification for a Collimator with In-jaw Beam Position Monitors 146
 
  • D. Wollmann, O. Aberle, R.W. Aßmann, A. Bertarelli, C.B. Boccard, R. Bruce, F. Burkart, M. Cauchi, A. Dallocchio, D. Deboy, M. Gasior, O.R. Jones, V. Kain, L. Lari, A.A. Nosych, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
 
  At present the beam based alignment of the LHC collimators is performed by touching the beam halo with the two jaws of each device. This method requires dedicated fills at low intensities that are done infrequently because the procedure is time consuming. This limits the operational flexibility in particular in the case of changes of optics and orbit configuration in the experimental regions. The system performance relies on the machine reproducibility and regular loss maps to validate the settings. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with in-jaw beam position monitors was proposed and successfully tested with a mock-up collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper the results of these experiments are discussed. The measured alignment accuracy is compared to the accuracies achieved with the present collimators in the LHC.  
 
MOP245 Quench Tests at the Large Hadron Collider with Collimation Losses at 3.5 Z TeV 157
 
  • S. Redaelli, R.W. Aßmann, G. Bellodi, K. Brodzinski, R. Bruce, F. Burkart, M. Cauchi, D. Deboy, B. Dehning, E.B. Holzer, J.M. Jowett, E. Nebot Del Busto, M. Pojer, A. Priebe, A. Rossi, M. Sapinski, M. Schaumann, R. Schmidt, M. Solfaroli Camillocci, G. Valentino, R. Versteegen, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  The Large Hadron Collider (LHC) has been operating since 2010 at 3.5 TeV and 4.0 TeV without experiencing quenches induced by losses from circulating beams. This situation might change at 7 TeV where the reduced margins in the superconducting magnets. The critical locations are the dispersion suppressors (DSs) at either side of the cleaning and experimental insertions, where dispersive losses are maximum. It is therefore crucial to understand in detail the quench limits with beam loss distributions alike those occurring in standard operation. In order to address this aspect, quench tests were performed by inducing large beam losses on the primary collimators of the betatron cleaning insertion, for proton and lead ion beams of 3.5 Z TeV, to probe the quench limits of the DS magnets. Losses up to 500 kW were achieved without quenches. The measurement technique and the results obtained are presented, including observations of heat loads in the cryogenics system.  
 
WEO3C03 Beam Halo Dynamics and Control with Hollow Electron Beams 466
 
  • G. Stancari, G. Annala, A. Didenko, T.R. Johnson, I.A. Morozov, V. Previtali, G.W. Saewert, V.D. Shiltsev, D.A. Still, A. Valishev, L.G. Vorobiev
    Fermilab, Batavia, USA
  • R.W. Aßmann, R. Bruce, S. Redaelli, A. Rossi, B. Salvachua, G. Valentino
    CERN, Geneva, Switzerland
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the US Department of Energy. Partial support was provided by the US LHC Accelerator Research Program (LARP).
Experimental measurements of beam halo diffusion dynamics with collimator scans are reviewed. The concept of halo control with a hollow electron beam collimator, its demonstration at the Tevatron, and its possible applications at the LHC are discussed.
 
slides icon Slides WEO3C03 [5.139 MB]  
 
MOP246 A Tool Based on the BPM-interpolated Orbit for Speeding up LHC Collimator Alignment 162
 
  • G. Valentino, N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
  • R.W. Aßmann, R. Bruce, G.J. Müller, S. Redaelli, B. Salvachua
    CERN, Geneva, Switzerland
 
  Beam-based alignment of the LHC collimators is required in order to measure the orbit center and beam size at the collimator locations. During an alignment campaign in March 2012, 80 collimators were aligned at injection energy (450 GeV) using automatic alignment algorithms in 7.5 hours, the fastest setup time achieved since the start of LHC operation in 2008. Reducing the alignment time even further would allow for more frequent alignments, providing more time for physics operation. The proposed tool makes use of the BPM-interpolated orbit to obtain an estimation of the beam centers at the collimators, which can be exploited to quickly move the collimator jaws from the initial parking positions to tighter settings before beam-based alignment commences.