Paper | Title | Page |
---|---|---|
MOP220 | Local Compensation-rematch for Major Element Failures in the C-ADS Accelerator | 102 |
|
||
In order to achieve the required reliability and availability for the C-ADS accelerator, a fault tolerance design is pursued. The effects of cavity failure in different locations have been studied and the schemes of compensation by means of local compensation have been investigated. After one cavity failure, by adjusting the settings of the neighboring cavities and the focusing elements to make sure that the Twiss parameters and energy are approximately recovered to that of the nominal ones at the matching point. We find the normalized RMS emittance and emittances including 99.9% and 100% particles have no obvious growth after applying the compensation with the RMS rematching in each section of the main linac. However, the conclusions above are drawn from the simulation results with the TraceWin code, which doesn't consider the phase difference. A code based on Matlab is under developing. By applying the code on the cavity failure in the middle part of spoke021 section, a fully compensated scheme with good dynamics results is obtained. The space charge effect is still not implanted in the code, and further study and optimization of the code will be performed in the next step. | ||
THO3A02 | Beam Dynamics of China ADS Linac | 502 |
|
||
Funding: Supported by China ADS Program(XDA03020000), National Natural Science Fundation of China (10875099) and IHEP Special Fundings(Y0515550U1) An ADS study program is approved by Chinese Academy of Sciences at 2011, which aims to design and built an ADS demonstration facility with the capability of more than 1000 MW thermal power within the following 25 years. The 15 MW driver accelerator will be designed and constructed by the Institute of High Energy Physics (IHEP) and Institute of Modern Physics (IMP) of China Academy of Sciences. This linac is characterized by the 1.5 GeV energy, 10 mA current and CW operation. It is composed by two parallel 10 MeV injectors and a main linac integrated with fault tolerance design. The superconducting acceleration structures are employed except the RFQ. The general considerations and the beam dynamics design of the driver accelerator will be presented. |
||
![]() |
Slides THO3A02 [5.822 MB] | |