BEAM DYNAMICS OF CHINA ADS DRIVER LINAC

Zhihui Li

On behalf of IHEP-IMP Joint Accelerator Physics Group of C-ADS

Institute of High Energy Physics, CAS

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

- 2
- A strategic plan to solve the nuclear waste problem for nuclear power plants in China;
- Study scientific problems and developing techniques associated with ADS;
- □ Three parts: accelerator, target and reactor;
- Goals: demonstration facility for wastes
 transmutation with capacity of 1GW thermal power;

Particle	Proton	
Energy	1.5	GeV
Current	10	mA
Beam power	15	MW
RF frequency	(162.5)/325/650	MHz
Duty factor	100	%
Beam Loss	<1	W/m
Beam trips/year	<25000 <2500 <25	1s< t <10s 10s< t <5m t >5m

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

High power

High availability □ Beam loss rate: <10⁻⁸

Dynamics: match, halo, resonance

Potential "show stopper"
 Fault tolerance and redundancy design

CW

Cavity type

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Architecture

- 2
- Parallel backup (< 10MeV)
- Local compensation (>10MeV)
- 30% field is reserved for compensation
 - ✓ longitudinal match
 - ✓ Energy match
 - ✓ Phase match

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Lattice Structure

6

Period lattice: easy for compensation; robust in beam dynamics;

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Lattice structure

Triplet like quadrupoles are applied in elliptical sections;

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Cavities

- > Emax<32.5MV/m for 325MHz cavity
- Emax<39 MV/m
 for 650MHz cavity
- > Bmax<65 mT</p>
- > 3 types of Single spoke cavity/1 type HWR and two types of single spoke
- > 2 types of 5-cell elliptical cavity

Cavity type	ßø	Freq.	Uacc. Max	Emax	Bmax		
curry type	20	MHz	MV	MV/m	mT		
HWR	0.09	162.5		25.0	50.0		
Single-cell spoke	0.12	325	0.82	32.5	47.5		
Single-cell spoke	0.21	325	1.64	23.95/31.14	50/65		
Single-cell spoke	0.40	325	2.86	24.66/32.06	50/65		
5-cell elliptical	0.63	650	10.26	29.01/37.72	50/65		
5-cell elliptical	0.82	650	15.63	27.53/35.80	50/65		

1/3 capability is reserved for local compensation

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Local compensation of Main lines

G Failures investigated:

- Cavity failure;
- Solenoid failure;
- > Quadrupole;

Goals:

- Twiss match;
- Energy;
- Beam quality;
- Cavity and quadrupole failures are easy to compensate, the mismatch factor after compensation is only about 1%, and RMS and 100% particle emittance growth nearly no significant change;
- Solenoid failure is the most difficult to compensate, and special measures have to be taken.

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Solenoid failure

Mismatch factor in transverse: 10%

10

RMS emittance growth: 7%

	Civity-1	Civity-2		Civity-3		Civity-4		
Initial phase	-33°	-33°		-33°		-33°		
After rematch	-33.9°	40.5°		-48°		-30.7°		
Initial voltage/ MV	1.24	1.26		1.3	1.35		1.37	
After rematch/ MV	2.1	0.92		1.0	1.64		0.46	
	Solenoid-1	Solenoid-2	Solenoid-3		Solenoid-4		Solenoid-5	
Initial field /T	3.21	3.34	3.48		3.56		3.52	
After rematch / T	4.08	3.64			3.63		2.64	

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China

Design Criteria

- - $\Box \sigma_0 < 90^\circ$ for both longitudinal and transverse planes;
 - **D** Space charge is not negligible: $\sigma/\sigma_0 \sim 0.7$
 - Parametric resonance: L_{eff} < L_{period} at low energy part
 - The external force is smooth and continues;
 - Special care has to be taken to avoid the parametric resonance as well as space charge resonance;
 - Emittance exchange-Hofmann Chart
 - Enough acceptance:
 - Synch. Ph. | / | RMS Ph. width | >10
 - (Half aperture)/(RMS envelop)> 10

Error analysis - C. Meng et al., MOP219

12

Elements	Solenoid	Spoke cavity	Elliptical cavity	Quadrupole	
errors	Alignment / Field error	Alignment / RF error	Alignment / RF error	Alignment /Field error	
Δx (mm)	±1	±1	±1	±0.2	
Δy (mm)	±1	±1	±1	±0.2	
Δz (mm)	±1	±1	±1	±0.5	
φx (mrad)	±2	±2	±2	±2	
φy (mrad)	±2	±2	±2	±2	
φz (mrad)		±2		±2	
$\Delta E(\%)/\Delta B(\%)$	±0.5	±1	±1	±0.5	
φRF (°)		±1	±1		
BPM accuracy			±0.1 mm		

Injector I

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Injector I

2012/9/20

Parameters of cavities			100 100 100 100 100 100 100 100
Cavity #	phase	Field level	
1	-43	0.92	
2	-40	1.0	
3	-38	1.08	20
4	-36	1.16	
5	-34	1.21	$0 + \cdots + 1 + \cdots + \cdots$
6	-32	1.27	Distance (m)
7	-30	1.3	Lines: short sole
8	-30	1.3	20 - ਦ੍ਹ - ਪ੍ਰਿੰਸ ਦੇ
9	-30	1.3	
10	-30	1.3	
11	-30	1.3	ting st start
12	-30	1.3	

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Distance /m

Injector I

15

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Injector II

16

Proportion of particles	0.95	0.99	0.999	0.9999	1
Emittance growth(%)	23.7	14.9	12.6	20.5	413

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Main Linac

• Two types of design corresponding to the two Injector schemes:

- Injector I : (Ez,Et)=(0.21, 0.25)
- Injector I: (Ez,Et)=(0.37, 0.32)
- Solutions:
 - Apply the design corresponding to Injector I to two schemes of Injectors;
 - Totally new design by apply some HWR cavities at the beginning of the main linac;

F. Yan et al., MOP221

Main linac

F. Yan et al., MOP221

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Length: about 4 m for the bending section;
 Low energy: space charge effect;
 Buncher outside the bending section: phase width is hard to control;

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Z. Guo et al., MOP217

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

End to End Simulation

21

• RMS Emittance growth

- \checkmark 15% in transverse;
- \checkmark 40% in longitudinal ;
- Halo particles
- Particle loss with errors;

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

Thank you for your attention!

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012, Beijing, China

100 200 300 Position (m) 400

Implementation of the Criteria

The 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, HB2012. Beijing, China