Author: Lari, L.
Paper Title Page
MOP242 Experimental Verification for a Collimator with In-jaw Beam Position Monitors 146
 
  • D. Wollmann, O. Aberle, R.W. Aßmann, A. Bertarelli, C.B. Boccard, R. Bruce, F. Burkart, M. Cauchi, A. Dallocchio, D. Deboy, M. Gasior, O.R. Jones, V. Kain, L. Lari, A.A. Nosych, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
 
  At present the beam based alignment of the LHC collimators is performed by touching the beam halo with the two jaws of each device. This method requires dedicated fills at low intensities that are done infrequently because the procedure is time consuming. This limits the operational flexibility in particular in the case of changes of optics and orbit configuration in the experimental regions. The system performance relies on the machine reproducibility and regular loss maps to validate the settings. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with in-jaw beam position monitors was proposed and successfully tested with a mock-up collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper the results of these experiments are discussed. The measured alignment accuracy is compared to the accuracies achieved with the present collimators in the LHC.  
 
WEO1A02 LHC Impedance Model: Experience with High Intensity Operation in the LHC 349
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, P. Baudrenghien, A. Bertarelli, C. Bracco, R. Bruce, X. Buffat, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, J.F. Esteban Müller, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, W. Herr, S. Jakobsen, R.J. Jones, G. Lanza, L. Lari, T. Mastoridis, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, T. Pieloni, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, R. Wasef, D. Wollmann
    CERN, Geneva, Switzerland
  • A.V. Burov
    Fermilab, Batavia, USA
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The CERN Large Hadron Collider (LHC) is now in luminosity production mode and has been pushing its performance in the past months by increasing the proton beam brightness, the collision energy and the machine availability. As a consequence, collective effects have started to become more and more visible and have effectively slowed down the performance increase of the machine. Among these collective effects, the interaction of brighter LHC bunches with the longitudinal and transverse impedance of the machine has been observed to generate beam induced heating and transverse instabilities since 2010. This contribution reviews the current LHC impedance model obtained from theory, simulations and bench measurements as well as a selection of measured effects with the LHC beam.  
slides icon Slides WEO1A02 [7.991 MB]  
 
MOP245 Quench Tests at the Large Hadron Collider with Collimation Losses at 3.5 Z TeV 157
 
  • S. Redaelli, R.W. Aßmann, G. Bellodi, K. Brodzinski, R. Bruce, F. Burkart, M. Cauchi, D. Deboy, B. Dehning, E.B. Holzer, J.M. Jowett, E. Nebot Del Busto, M. Pojer, A. Priebe, A. Rossi, M. Sapinski, M. Schaumann, R. Schmidt, M. Solfaroli Camillocci, G. Valentino, R. Versteegen, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  The Large Hadron Collider (LHC) has been operating since 2010 at 3.5 TeV and 4.0 TeV without experiencing quenches induced by losses from circulating beams. This situation might change at 7 TeV where the reduced margins in the superconducting magnets. The critical locations are the dispersion suppressors (DSs) at either side of the cleaning and experimental insertions, where dispersive losses are maximum. It is therefore crucial to understand in detail the quench limits with beam loss distributions alike those occurring in standard operation. In order to address this aspect, quench tests were performed by inducing large beam losses on the primary collimators of the betatron cleaning insertion, for proton and lead ion beams of 3.5 Z TeV, to probe the quench limits of the DS magnets. Losses up to 500 kW were achieved without quenches. The measurement technique and the results obtained are presented, including observations of heat loads in the cryogenics system.