Author: Hancock, S.
Paper Title Page
TUO1A01 The High Intensity/High Brightness Upgrade Program at CERN: Status and Challenges 226
 
  • S.S. Gilardoni, G. Arduini, T. Argyropoulos, S. Aumon, H. Bartosik, E. Benedetto, N. Biancacci, T. Bohl, J. Borburgh, C. Carli, F. Caspers, H. Damerau, J.F. Esteban Müller, V. Forte, R. Garoby, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, G. Iadarola, M. Meddahi, G. Métral, B. Mikulec, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, F. Schmidt, E.N. Shaposhnikova, R. Steerenberg, G. Sterbini, M. Taborelli, H. Timko, M. Vretenar, R. Wasef, C. Yin Vallgren, C. Zannini
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
  • A.Y. Molodozhentsev
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
  • V.G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
 
  The future beam brilliance and intensities required by the HL-LHC (High-Luminosity LHC) project and for possible new neutrino production beams triggered a deep revision of the LHC injector performances. The analysis, progressing in the framework of the LHC Injectors Upgrade (LIU) projects, outlined major limitations mainly related to collective effects - space charge in PSB and PS, electron cloud driven and TMCI instabilities in the SPS, longitudinal coupled bunch instabilities in the PS for example - but also to the existing hardware capability to cope with beam instabilities and losses. A summary of the observations and simulation studies carried out so far, as well as the future ones, will be presented. The solution proposed to overcome the different limitations and the plans for their implementation will be also briefly reviewed.  
slides icon Slides TUO1A01 [12.748 MB]  
 
WEO1C03 Longitudinal Beam Loss Studies of the CERN PS-to-SPS Transfer 439
 
  • H. Timko, T. Argyropoulos, T. Bohl, H. Damerau, J.F. Esteban Müller, S. Hancock, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  Bunch-to-bucket transfer between the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS) is required before beams can enter the Large Hadron Collider. The overall beam loss at this transfer is currently around 5-10 %, and is increased for higher intensities or larger longitudinal emittances. Previous attempts to reduce the losses with additional RF voltage from spare cavities in the PS were unsuccessful. In this paper, we modelled the complete PS flat-top bunch splitting and rotation manipulations, PS-to-SPS transfer, SPS flat bottom and acceleration ramp using end-to-end simulations. Starting from the measured bunch distributions, the simulations provide an accurate insight into the problem and allow direct benchmarking with experiments. As a result, it was understood and confirmed by measurements that shorter bunches do not necessarily lead to better transmission. The particle distribution in longitudinal phase space at PS extraction should be optimised instead. A significant loss reduction of up to 50 % is expected from simulations; experimental studies are on-going to verify these theoretical findings.  
slides icon Slides WEO1C03 [3.903 MB]