

Longitudinal Beam Loss Studies of the CERN PS-to-SPS Transfer

Helga Timkó CERN in collaboration with

Heiko Damerau, Theodoros Argyropoulos, Thomas Bohl, Steven Hancock, Juan Esteban Müller, Elena Shaposhnikova

- Introduction and motivation
 - Studies in the past and now
- Methods
 - Simulations and measurements
- Optimisation of the PS bunch rotation
 - Using spare cavities
- Emittance and intensity dependence
- Implications and conclusions

Introduction & motivation

- Continuous efforts to optimise the PS-SPS transfer for several years
- *In the past:* the aim was to reduce losses
 - For low SPS capture voltages, losses were unacceptable, up to 20-40 % (2004)

Motivation (2)

- <u>Now:</u> only ~5 % losses for the nominal intensity (due to long optimisation and less e-cloud)
 - However, relative losses increase with intensity \Rightarrow will be an issue
 - Higher intensity $\rightarrow \epsilon_1 \rightarrow$ more losses
 - Beam loading \rightarrow deformation of bucket \rightarrow more losses
 - Using a larger ε_1 is desirable also for stability in the PS & SPS
- <u>In measurements till 2011</u> no loss reduction could be achieved by changing the PS bunch rotation settings
 - Idea: shorter τ using higher voltage for the PS bunch rotation
 - Result: even though τ got significantly shorter, loss remained the same
 - This scheme didn't work and it wasn't understood why...

- Introduction and motivation
 - Studies in the past and now
- Methods
 - Simulations and measurements
- Optimisation of the PS bunch rotation
 - Using spare cavities
- Emittance and intensity dependence
- Implications and conclusions

Simulations

- The LHC-type 50 ns and 25 ns beam has been modelled with ESME
 - Single bunch simulations, without intensity effects
 - Using averaged, real bunch distributions, measured at PS FT (with the tomoscope)
 - Full tracking of PS & SPS RF manipulations
 - PS: adiabatic voltage reduction, double splitting(s), bunch rotation;
 - SPS: FB, in some cases also ramp

- Capture losses dominated by losses from the bunch tails
 - Shorter bunches do not necessarily result in the best transmission
- Need to optimise the particle distribution in phase space – not visible from bunch profiles, sims. needed!

Operational bunch-to-bucket transfer

Measurements

- First measurements started in 2011, several sessions in 2012
- <u>Dedicated cycle</u> for measurements in parallel with operation
 - 36 bunches of 50 ns spaced LHC-type beam
 - Intensity: ~1.6× 10¹¹ ppb (except for intensity studies)
 - Varying the PS rotation timings $t_{40 \text{ MHz}}$ and $t_{80 \text{ MHz}}$ to optimise the distrib.
 - Using the spare 40 MHz or the spare 80 MHz cavity in the PS to increase the rotation voltage
 - Operational: 1×40 MHz, 2×80 MHz cavities
- Bunch length:
 - at PS ejection
- *<u>Transmission:</u>*
 - (intensity at 30 GeV) / (injected intensity)
 - In the simulations:
 - only capture + FB losses

Operational PS voltage at bunch rotation

- Introduction and motivation
 - Studies in the past and now
- Methods
 - Simulations and measurements
- Optimisation of the PS bunch rotation
 - Using spare cavities
- Emittance and intensity dependence
- Implications and conclusions

Option 1: Use the spare 80 MHz cavity

- Simulations predict: optimum at t_{40MHz} = 200-220 µs, t_{80MHz} = 100 µs
- Gain compared to operational settings:
 - $T = 95.6 \% \rightarrow 97.9 \%; L = 4.4 \% \rightarrow 2.1 \%$

Option 1: Measurement results

98 97

96

95

94

93

92

91 90

89

88

87 86

85

(a) Transmission [%] at 30 GeV/c

(b) Bunch length [ns] at PS extraction

Optimal settings for

 $V_{40MHz} = 300 \text{ kV},$ $V_{80MHz} = 900 \text{ kV}:$ $t_{40MHz} = 240 \text{ }\mu\text{s},$ $t_{80MHz} = 100 \text{ }\mu\text{s}$

 Gain compared to operational settings

> $T = 95.4 \% \rightarrow 96.3 \%$ L = 4.6 % \rightarrow 3.7 %

 N.B. constant offset of transverse losses

Option 2: Use the spare 40 MHz cavity

- Simulations predict: optimum at t_{40MHz} = 130 µs, t_{80MHz} = 80 µs
- Gain compared to operational settings:
 - $T = 95.6 \% \rightarrow 98.1 \%$; $L = 4.4 \% \rightarrow 1.9 \%$

Option 2: Measurement results

Optimal settings for

 $V_{40MHz} = 600 \text{ kV},$ $V_{80MHz} = 600 \text{ kV}:$ $t_{40MHz} = 130 \text{ }\mu\text{s},$ $t_{80MHz} = 90 \text{ }\mu\text{s}$

 Gain compared to operational settings

> $T = 94.8 \% \rightarrow 97.7 \%$ L = 5.2 % \rightarrow 2.3 %

- Introduction and motivation
 - Studies in the past and now
- Methods
 - Simulations and measurements
- Optimisation of the PS bunch rotation
 - Using spare cavities
- Emittance and intensity dependence
- Implications and conclusions

Spare 80 MHz cavity: Emittance dependence

• Now we understand the results of previous years...

Gives a better transmission <u>and</u> shorter bunches!

Operational transmission even with ~40 % larger ϵ_1 !

Spare 40 MHz cavity: Intensity dependence

• About ~ 15 % higher intensity with the same transmission

	Vistow-up	$t_{\rm 40~MHz}$	$t_{80} \mathrm{~MHz}$	$arepsilon_l^{old 90}$ %	T	$ au_{4\sigma}$
Operatio	onal	→ 1.58	$\times 10^{11} \text{ ppb}$, $V_{40 \text{ MHz}} = 300 \text{ kV}, V_{8}$	so $_{\rm MHz} = 600 \ \rm kV$	
	$2 \times 5.5 \text{ kV}$	$160 \ \mu s$	$120~\mu \mathrm{s}$	(0.539 ± 0.006) eVs	(94.9 ± 0.5) %	(4.00 ± 0.04) ns
	$2 \times 5.5 \text{ kV}$	$200 \ \mu s$	$120 \ \mu s$	(0.546 ± 0.005) eVs	(95.2 ± 0.5) %	(4.23 ± 0.03) ns
		1.81	$\times 10^{11} \text{ ppb}$, $V_{40 \text{ MHz}} = 300 \text{ kV}, V_8$	$_{80 \mathrm{~MHz}} = 600 \mathrm{~kV}$	
	$2\times5.5~\mathrm{kV}$	$160 \ \mu s$	$120 \ \mu s$	$(0.567 \pm 0.010) \text{ eVs}$	(93.4 ± 0.3) %	(4.02 ± 0.03) ns
	$2\times5.5~\mathrm{kV}$	$200 \ \mu s$	$120~\mu {\rm s}$	$(0.611 \pm 0.008)~{\rm eVs}$	$(93.4\pm 0.9)~\%$	(4.23 ± 0.03) ns
	1.58×10^{11} ppb, $V_{40 \text{ MHz}} = 600 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV}$					
	$2\times5.5~\mathrm{kV}$	$130 \ \mu s$	$90 \ \mu s$	$(0.550 \pm 0.012) \text{ eVs}$	$(97.0 \pm 0.4) \%$	(3.63 ± 0.03) ns
	$2 \times 8.5 \text{ kV}$	$130 \ \mu s$	$90 \ \mu s$	$(0.612 \pm 0.012) \text{ eVs}$	$(96.8\pm 0.3)~\%$	$(3.84\pm0.02)~\mathrm{ns}$
W/ spare 40 MHz cavity \rightarrow 1.81 × 10 ¹¹ ppb, $V_{40 \text{ MHz}} = 600 \text{ kV}, V_{80 \text{ MHz}} = 600 \text{ kV}$						
IVIIIZ Cu	$2 \times 5.5 \text{ kV}$	$130 \ \mu s$	$90 \ \mu s$	$(0.551 \pm 0.007) \text{ eVs}$	(94.6 ± 0.9) %	$(3.71\pm0.04)~\mathrm{ns}$
	$2 \times 8.5 \text{ kV}$	$130 \ \mu s$	$90 \ \mu s$	(0.550 ± 0.007) eVs	(95.1 ± 0.7) %	$(3.83\pm0.02)~\mathrm{ns}$

- Introduction and motivation
 - Studies in the past and now
- Methods
 - Simulations and measurements
- Optimisation of the PS bunch rotation
 - Using spare cavities
- Emittance and intensity dependence
- Implications and conclusions

- <u>Using the spare 40 MHz cavity</u> has some clear advantages over the 80 MHz cavity:
 - Better transmission
 - Shorter bunch length
 - Emittance margin: 40 % (!)
 - Intensity margin: 15 %
 - Spare 40 MHz cavity not needed for ions (unlike the spare 80 MHz)
- *The new scheme still needs to be tested in an operational cycle*
- Even if beam losses currently don't cause concerns, <u>stability is a key</u> <u>issue</u> at the present intensity, both in the PS & SPS
 - Maybe the spare 40 MHz cavity could be a solution?
 - Empirical longitudinal stability scaling in the PS (at low intensities): $N_b/\epsilon_1 = const. \Rightarrow$ in theory, could gain up to 40 % in intensity

PS hardware requirements

- Using a spare 40 MHz cavity requires only minimal low-level hardware modifications
 - Low-cost solution
 - Improved operational availability of the 40 MHz cavities is important (e.g. new power supplies)
- Do we need to have a spare cavity?
 - If a cavity fails, we still can go back to the currently operational settings
- Adding a 3rd 40 MHz cavity to the PS is an option, too
 - But: at significant cost and manpower effort

Conclusions

- Simulations determined the loss mechanism of the PS-SPS transfer and agree very well with previous and present measurement results
- The <u>optimum phase space particle distribution</u> at PS extraction has been obtained by simulations, and confirmed by experiments
 - Can significantly improve the transmission
 - Or provide a ~40 % emittance margin while keeping the same transmission
- Has the potential to <u>improve beam stability</u> in the PS and, hence, allows for higher-intensity beams with good quality, which is important for the LHC
- Once the spare 40 MHz cavity is available again, the new scheme still needs to be tested under operational conditions

Thank you!