Author: Geng, H.
Paper Title Page
MOP217 MEBT2 Design for the C-ADS Linac 93
 
  • Z. Guo, H. Geng, Z. Li, J.Y. Tang
    IHEP, Beijing, People's Republic of China
 
  The C-ADS linac is composed by two parallel injectors and a main linac, a section of Medium Energy Beam Line (MEBT2) is designed to guide and match beams from two injectors to the main linac. The two injectors are hot-spare for each other in order to satisfied the requirement of high availability and reliability. The beam in online operation mode will be directed to the main linac from one injector, while the beam in the offline mode with low repetition frequency from the other injector, will be directed to a beam dump through an auxiliary beam line. With a long drift distance and in the presence of space charge force for 10 mA 10 MeV proton beam, the debunching effect is very strong and it requires very strict control over beam losses and emittance growth. It is difficult to obtain satisfactory longitudinal matching without bunchers in the bending section. An analytical study using transfer matrix shows that with two bunchers of same voltage in the bending section the achromatism can be maintained if the effective voltage is inversely proportional to the distance between the two bunchers. It is also under consideration if and how a beam collimation can be implanted in MEBT2.  
 
THO3A02 Beam Dynamics of China ADS Linac 502
 
  • Z. Li
    Private Address, Beijing, People's Republic of China
  • P. Cheng, H. Geng, Z. Guo, C. Meng, B. Sun, J.Y. Tang, F. Yan
    IHEP, Beijing, People's Republic of China
 
  Funding: Supported by China ADS Program(XDA03020000), National Natural Science Fundation of China (10875099) and IHEP Special Fundings(Y0515550U1)
An ADS study program is approved by Chinese Academy of Sciences at 2011, which aims to design and built an ADS demonstration facility with the capability of more than 1000 MW thermal power within the following 25 years. The 15 MW driver accelerator will be designed and constructed by the Institute of High Energy Physics (IHEP) and Institute of Modern Physics (IMP) of China Academy of Sciences. This linac is characterized by the 1.5 GeV energy, 10 mA current and CW operation. It is composed by two parallel 10 MeV injectors and a main linac integrated with fault tolerance design. The superconducting acceleration structures are employed except the RFQ. The general considerations and the beam dynamics design of the driver accelerator will be presented.
 
slides icon Slides THO3A02 [5.822 MB]