Author: Franchetti, G.
Paper Title Page
TUO1A01 The High Intensity/High Brightness Upgrade Program at CERN: Status and Challenges 226
 
  • S.S. Gilardoni, G. Arduini, T. Argyropoulos, S. Aumon, H. Bartosik, E. Benedetto, N. Biancacci, T. Bohl, J. Borburgh, C. Carli, F. Caspers, H. Damerau, J.F. Esteban Müller, V. Forte, R. Garoby, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, G. Iadarola, M. Meddahi, G. Métral, B. Mikulec, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, F. Schmidt, E.N. Shaposhnikova, R. Steerenberg, G. Sterbini, M. Taborelli, H. Timko, M. Vretenar, R. Wasef, C. Yin Vallgren, C. Zannini
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
  • A.Y. Molodozhentsev
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
  • V.G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli, Italy
 
  The future beam brilliance and intensities required by the HL-LHC (High-Luminosity LHC) project and for possible new neutrino production beams triggered a deep revision of the LHC injector performances. The analysis, progressing in the framework of the LHC Injectors Upgrade (LIU) projects, outlined major limitations mainly related to collective effects - space charge in PSB and PS, electron cloud driven and TMCI instabilities in the SPS, longitudinal coupled bunch instabilities in the PS for example - but also to the existing hardware capability to cope with beam instabilities and losses. A summary of the observations and simulation studies carried out so far, as well as the future ones, will be presented. The solution proposed to overcome the different limitations and the plans for their implementation will be also briefly reviewed.  
slides icon Slides TUO1A01 [12.748 MB]  
 
WEO1C01 Effect of Self-consistency on Periodic Resonance Crossing 429
 
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  In high intensity bunched beams resonance crossing gives rise to emittance growth and beam loss. Both these effects build up after many synchrotron oscillations. Up to now long term modeling have relied on frozen models neglecting the physics of self-consistency. We address here this issue and present the state of the art of simulations also applied to the SIS100.  
slides icon Slides WEO1C01 [3.657 MB]  
 
THO1D01
Fully 3D Long-term Simulation of the Coupling Resonance Experiments at the CERN PS  
 
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
  • G. Franchetti, I. Hofmann
    GSI, Darmstadt, Germany
  • E. Métral
    CERN, Geneva, Switzerland
 
  Funding: This work is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Space-charge driven nonlinear coupling resonance can have significant impact in high intensity linac and ring operation. Such a resonance causes emittance exchange between different degrees of freedom and may result in potential particle loss from the direction with smaller aperture size. In this paper, we will report on numerical simulation studies of the resonance crossing phenomena using a previous experiment at the CERN PS including detailed three-dimensional space-charge effects and machine nonlinearity.
 
slides icon Slides THO1D01 [0.589 MB]  
 
FRO1A01 Summary of Working Group A: Beam Dynamics in High-Intensity Circular Machines 606
 
  • E. Métral
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
  • J.A. Holmes
    ORNL, Oak Ridge, Tennessee, USA
 
  In this proceeding we summarize the presentations of the HB2012 Workshop session on 'Beam Dynamics in High-Intensity Circular Machines' as well as the outcome of the discussion session. This working group hosted 29 presentations in dedicated sessions plus 5 presentations in a joint session with the working C.  
slides icon Slides FRO1A01 [7.420 MB]