Author: Cheng, P.
Paper Title Page
MOP212 Simulation of Longitudinal Beam Instability caused by HOMs 73
 
  • P. Cheng, Z. Li, J.Y. Tang, J.Q. Wang
    IHEP, Beijing, People's Republic of China
 
  Superconducting cavities are employed in C-ADS linac to accelerate 10mA CW proton beams from 3.2 MeV to 1.5 GeV. High order modes in superconducting cavities are found by using the simulation tools CST and HFSS, then power dissipation caused by HOMs have been investigated, it is indicated that the Qext should not go beyond 107} in order to limit the additional heat load. Beam instabilities caused by high order modes in elliptical cavity sections are investigated using the code offered by Dr. Jean-Luc Biarrotte (CNRS, IPN Orsay, France). Beam errors, linac errors and high order modes frequency spread are investigated in detail. It shows that the monopole modes do not affect the proton beam critically and need no HOM couplers (Qext=105}) if high order modes frequency spread is more than 100 kHz.  
 
THO3A02 Beam Dynamics of China ADS Linac 502
 
  • Z. Li
    Private Address, Beijing, People's Republic of China
  • P. Cheng, H. Geng, Z. Guo, C. Meng, B. Sun, J.Y. Tang, F. Yan
    IHEP, Beijing, People's Republic of China
 
  Funding: Supported by China ADS Program(XDA03020000), National Natural Science Fundation of China (10875099) and IHEP Special Fundings(Y0515550U1)
An ADS study program is approved by Chinese Academy of Sciences at 2011, which aims to design and built an ADS demonstration facility with the capability of more than 1000 MW thermal power within the following 25 years. The 15 MW driver accelerator will be designed and constructed by the Institute of High Energy Physics (IHEP) and Institute of Modern Physics (IMP) of China Academy of Sciences. This linac is characterized by the 1.5 GeV energy, 10 mA current and CW operation. It is composed by two parallel 10 MeV injectors and a main linac integrated with fault tolerance design. The superconducting acceleration structures are employed except the RFQ. The general considerations and the beam dynamics design of the driver accelerator will be presented.
 
slides icon Slides THO3A02 [5.822 MB]