Author: Carra, F.
Paper Title Page
MOP240 High Energy Tests of Advanced Materials for Beam Intercepting Devices at CERN HiRadMat Facility 136
 
  • A. Bertarelli, R.W. Aßmann, E. Berthomé, V. Boccone, F. Carra, F. Cerutti, A. Dallocchio, P. Francon, L. Gentini, M. Guinchard, N. Mariani, A. Masi, P. Moyret, S. Redaelli, S.D.M. dos Santos
    CERN, Geneva, Switzerland
  • L. Peroni, M. Scapin
    Politecnico di Torino, Torino, Italy
 
  Predicting by simulations the consequences of LHC particle beams hitting Collimators and other Beam Intercepting Devices (BID) is a fundamental issue for machine protection: this can be done by resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, these codes require reliable material models that, at the extreme conditions generated by a beam impact, are either imprecise or nonexistent. To validate relevant constitutive models or, when unavailable, derive new ones, a comprehensive experimental test foreseeing intense particle beam impacts on six different materials, either already used for present BID or under development for future applications, is being prepared at CERN HiRadMat facility. Tests will be run at medium and high intensity using the SPS proton beam (440 GeV). Material characterization will be carried out mostly in real time relying on embarked instrumentation (strain gauges, microphones, temperature and pressure sensors) and on remote acquisition devices (Laser Doppler Vibrometer and High-Speed Camera). Detailed post-irradiation analyses are also foreseen after the cool down of the irradiated materials.  
 
WEO1A02 LHC Impedance Model: Experience with High Intensity Operation in the LHC 349
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, P. Baudrenghien, A. Bertarelli, C. Bracco, R. Bruce, X. Buffat, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, J.F. Esteban Müller, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, W. Herr, S. Jakobsen, R.J. Jones, G. Lanza, L. Lari, T. Mastoridis, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, T. Pieloni, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, R. Wasef, D. Wollmann
    CERN, Geneva, Switzerland
  • A.V. Burov
    Fermilab, Batavia, USA
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The CERN Large Hadron Collider (LHC) is now in luminosity production mode and has been pushing its performance in the past months by increasing the proton beam brightness, the collision energy and the machine availability. As a consequence, collective effects have started to become more and more visible and have effectively slowed down the performance increase of the machine. Among these collective effects, the interaction of brighter LHC bunches with the longitudinal and transverse impedance of the machine has been observed to generate beam induced heating and transverse instabilities since 2010. This contribution reviews the current LHC impedance model obtained from theory, simulations and bench measurements as well as a selection of measured effects with the LHC beam.  
slides icon Slides WEO1A02 [7.991 MB]