Author: Burkart, F.
Paper Title Page
MOP241 An Experiment on Hydrodynamic Tunnelling of the SPS High Intensity Proton Beam at the HiRadMat Facility 141
 
  • J. Blanco, F. Burkart, N. Charitonidis, I. Efthymiopoulos, D. Grenier, C. Maglioni, R. Schmidt, C. Theis, D. Wollmann
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
  • N.A. Tahir
    GSI, Darmstadt, Germany
 
  The LHC will collide proton beams with an energy stored in each beam of 362 MJ. To predict damage for a catastrophic failure of the protections systems, simulation studies of the impact of an LHC beam on copper targets were performed. Firstly, the energy deposition of the first bunches in a target with FLUKA is calculated. The effect of the energy deposition on the target is then calculated with a hydrodynamic code, BIG2. The impact of only a few bunches leads to a change of target density. The calculations are done iteratively in several steps and show that such beam can tunnel up to 30-35 m into a target. Similar simulations for the SPS beam also predict hydrodynamic tunnelling. An experiment at the HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS) is performed to validate the simulations. The particle energy in the SPS beam is 440 GeV and has up to 288 bunches. Significant hydrodynamic tunnelling due to hydrodynamic effects are expected. First experiments are planned for July 2012. Simulation results, the experimental setup and the outcome of the tests will be reported at this workshop.  
 
MOP242 Experimental Verification for a Collimator with In-jaw Beam Position Monitors 146
 
  • D. Wollmann, O. Aberle, R.W. Aßmann, A. Bertarelli, C.B. Boccard, R. Bruce, F. Burkart, M. Cauchi, A. Dallocchio, D. Deboy, M. Gasior, O.R. Jones, V. Kain, L. Lari, A.A. Nosych, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
 
  At present the beam based alignment of the LHC collimators is performed by touching the beam halo with the two jaws of each device. This method requires dedicated fills at low intensities that are done infrequently because the procedure is time consuming. This limits the operational flexibility in particular in the case of changes of optics and orbit configuration in the experimental regions. The system performance relies on the machine reproducibility and regular loss maps to validate the settings. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with in-jaw beam position monitors was proposed and successfully tested with a mock-up collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper the results of these experiments are discussed. The measured alignment accuracy is compared to the accuracies achieved with the present collimators in the LHC.  
 
MOP245 Quench Tests at the Large Hadron Collider with Collimation Losses at 3.5 Z TeV 157
 
  • S. Redaelli, R.W. Aßmann, G. Bellodi, K. Brodzinski, R. Bruce, F. Burkart, M. Cauchi, D. Deboy, B. Dehning, E.B. Holzer, J.M. Jowett, E. Nebot Del Busto, M. Pojer, A. Priebe, A. Rossi, M. Sapinski, M. Schaumann, R. Schmidt, M. Solfaroli Camillocci, G. Valentino, R. Versteegen, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  The Large Hadron Collider (LHC) has been operating since 2010 at 3.5 TeV and 4.0 TeV without experiencing quenches induced by losses from circulating beams. This situation might change at 7 TeV where the reduced margins in the superconducting magnets. The critical locations are the dispersion suppressors (DSs) at either side of the cleaning and experimental insertions, where dispersive losses are maximum. It is therefore crucial to understand in detail the quench limits with beam loss distributions alike those occurring in standard operation. In order to address this aspect, quench tests were performed by inducing large beam losses on the primary collimators of the betatron cleaning insertion, for proton and lead ion beams of 3.5 Z TeV, to probe the quench limits of the DS magnets. Losses up to 500 kW were achieved without quenches. The measurement technique and the results obtained are presented, including observations of heat loads in the cryogenics system.