Author: Bohler, D.K.
Paper Title Page
WEP003 Recent Understanding and Improvements of the LCLS Injector 592
  • F. Zhou, D.K. Bohler, Y. Ding, S. Gilevich, Z. Huang, H. Loos, D.F. Ratner
    SLAC, Menlo Park, California, USA
  Funding: U.S. DOE contract No. DE-AC02-76SF00515.
Ultraviolet drive laser and copper photocathode are the key systems for reliably delivering <0.4 micron of emittance and high brightness free electron laser (FEL) at the linac coherent light source (LCLS). Characterizing, optimizing and controlling laser distributions in both spatial and temporal directions are important for ultra-low emittance generation. Spatial truncated Gaussian laser profile has been demonstrated to produce better emittance than a spatial uniform beam. Sensitivity of the spatial laser distribution for the emittance is measured and analysed. Stacking two 2-ps Gaussian laser beams significantly improves emittance and eventually FEL performance at the LCLS in comparison to a single 2-ps Gaussian laser pulse. In addition, recent observations at the LCLS show that the micro-bunching effect depends strongly on the cathode spot locations. The dependence of the micro-bunching and FEL performance on the cathode spot location is mapped and discussed.
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)