Author: Ziemann, V.G.
Paper Title Page
MOP062 FEL Proposal Based on CLIC X-Band Structure 186
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • E. Adli
    University of Oslo, Oslo, Norway
  • D. Angal-Kalinin, J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.J. Boland, T.K. Charles, R.T. Dowd, G. LeBlanc
    SLSA, Clayton, Australia
  • N. Charitonidis, A. Grudiev, A. Latina, D. Schulte, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • G. D'Auria, S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • E.N. Gazis
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • Z. Nergiz
    Nigde University, Nigde, Turkey
  A linear accelerating structure with an average loaded gradient of 100 MV/m at X-Band frequencies has been demonstrated in the CLIC study. Recently, it has been proposed to use this structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by an RF source created by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the structure choice and conceptual design parameters of a facility which could generate laser photon pulses below Angstrom. Shorter wavelengths can also be reached with slightly increasing the energy.  
TUP066 Facility for Coherent THz and FIR Radiation 512
  • A. Meseck
    HZB, Berlin, Germany
  • V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  Linac based THz sources are increasingly becoming the method of choice for a variety of research fields, justifying the increasing demand for high repetition rate THz FEL facilities world wide. In particular, pump and probe experiments with THz and IR radiation are of major interest for the user community. In this paper, we propose a facility which accommodates an SRF-linac driven cw THz-FEL in combination with an IR undulator which utilizes the microbunched beam. The layout permits almost perfect synchronization between pump and probe pulse as well as nearly independently tunable THz and IR radiation.  
poster icon Poster TUP066 [1.655 MB]