Author: Vardanyan, T.L.
Paper Title Page
MOP001 Particle Tracking Simulations for EXFEL Complex shape Collimators 22
  • V.G. Khachatryan, V.H. Petrosyan, T.L. Vardanyan
    CANDLE SRI, Yerevan, Armenia
  The study sets the objective to investigate through numerical simulation the produced secondary radiation properties when the electron beam particles hit collimator walls. Using particle tracking simulation code FLUKA, the European XFEL electron beam as well as beam halo interaction with the collimator were simulated. The complex geometrical shape and material composition of the collimator have been taken into account. Absorbed dose spatial distribution in the material of the collimators and particle fluencies from the downstream surface of the collimator were simulated for the total secondary radiation and its main components.  
MOP003 Helical Undulator Radiation in Internally Coated Metallic Pipe 26
  • T.L. Vardanyan, A. Grigoryan, L.V. Hovakimyan, M. Ivanyan, A.V. Tsakanian, V.M. Tsakanov
    CANDLE SRI, Yerevan, Armenia
  The vacuum chambers of many advanced undulator sources are coated internally in order to reduce the impedance of the vacuum chamber or improve the vacuum performance. Although the impedances and radiation properties of the internally coated metallic pipes for straightforward moving charge are well studied, the peculiarities of the particles wiggling motion on the radiation characteristics in such structure are missed. In this paper we obtain exact expressions for the fields of a particle moving along a spiral path, as in the single-layer resistive as well as in the two-layer metallic waveguides, modelling NEG coating of the waveguide walls. Based on these results, it will be possible to obtain the necessary characteristics of the radiation of helical undulators, very close to reality. The solution is obtained as a superposition of a particular solution of inhomogeneous Maxwell's equations in a waveguide with perfectly conducting walls, and the solutions of the homogeneous Maxwell equations in the single-layer and double-layer resistive waveguides. Solution in the form of the multipole expansion for inhomogeneous Maxwell's equations for a waveguide with perfectly conducting walls, are also obtained in this study.  
TUP083 ALPHA – The THz Radiation Source based on AREAL 561
  • T.L. Vardanyan, G.A. Amatuni, V.S. Avagyan, A. Grigoryan, B. Grigoryan, M. Ivanyan, V.G. Khachatryan, V.H. Petrosyan, V. Sahakyan, A. Sargsyan, A.V. Tsakanian, V.M. Tsakanov, A. Vardanyan, G.S. Zanyan
    CANDLE SRI, Yerevan, Armenia
  Advanced Research Electron Accelerator Laboratory (AREAL) based on photo cathode RF gun is under construction at the CANDLE. The basic aim of this new facility is to generate sub-picosecond duration electron bunches with an extremely small beam emittance and energies up to 50 MeV. One of the promising directions of the facility development is the creation of ALPHA (Amplified Light Pulse for High-end Applications) experimental stations with coherent radiation source in THz region based on the concept of both conventional undulator and novel radiation sources. The status of the AREAL facility, the main features and outlooks for the ALPHA station are presented in this work.