Author: van der Zande, W.J.
Paper Title Page
Influence of the Lower Frequency Branch on the Performance of a Waveguided THz FEL  
  • V.O. Yatsyna, V. Zhaunerchyk
    University of Gothenburg, Gothenburg, Sweden
  • R.T. Jongma, W.J. van der Zande
    Radboud University, Nijmegen, The Netherlands
  Funding: We would like to acknowledge the financial support from Swedish Research Council and Swedish FEL Center.
The Terahertz (THz) frequency range is highly relevant in many applications ranging from medicine to security and communication. Among different available THz sources, free electron lasers (FELs) are the most powerful and versatile sources that provide tunable light in the whole THz region. THz FELs usually operate as oscillators and employ a waveguide to suppress diffraction losses. When a waveguide covers only a part of the optical cavity, substantial drops of the output power at certain wavelengths are observed *. The THz FEL FLARE operating in the wavelength range of 0.1-1.5 mm comprises a waveguide which covers the whole cavity length**. Surprisingly, the spectral gaps are still observed. To get insight into origin of the gaps, we perform numerical simulations taking into account both lower and higher resonant frequency branches, as well as interaction between 150 THz pulses that simultaneously propagate through the FLARE cavity. Simulations predict that the lower frequency branch can hamper amplification of the other branch and, thus, can lead to the spectral gaps.
* R. Prazerez et al. Phys. Rev. ST Accel. Beams 12, 010701 (2009)
** R. Chulkov et al. Multi-Mode Dynamics in a Short-Pulse THz FEL. Phys. Rev. ST Accel. Beams, to be published in 2014
poster icon Poster TUP067 [1.457 MB]