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Introduction Methods
THz FELs usually operate as oscillators and employ a waveguide to suppress diffraction The FEL dynamics 1s simulated with a code based on a model similar to that
losses. When a waveguide covers only a part of the optical cavity, substantial drops of the reported in Rets. 2—3. Since this computational model does not employ any
output power at certain wavelengths (spectral caps) are observed [1]. averaging over a ponderomotive or resonant wavelength, it enables simulation of
— the full FEL dynamics in the situation that the electron bunch length 1s comparable

The THz FEL FLARE operating in the
wavelength range of 0.1 - 1.5 mm (0.2 - 2.0
THz) comprises a waveguide which covers the
whole optical cavity length. Surprisingly, the
scanning problem of FLARE 1s even more
severe.

In this work we perform numerical simulations ¥

to the resonant wavelength, which 1s the case for FLARE.

The details of FLARE setup used for simulations are presented in Table 1.
Previous study on mode dynamics [3] showed that mainly E™,, Hermite-Gaussian
mode 1s amplified in FLARE, so we use 1t for analysis to reduce the computational
time. Also, the group velocity of lower frequency branch - 1s lower then the
velocity of electrons. We account this fact, as well as simultaneous propagation of

to get insight on the possible reasons of the o g (T ¥ 150 electron bunches by reducing the effective length of the cavity for - b.ranch.
lower frequency branch established by the Fig. 1. Free-electron Laser for subsequent electron bunches on the next cavity roundtrip.
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