Author: Sergeeva, D.Yu.
Paper Title Page
TUP013 X-Ray Smith-Purcell Radiation from a Beam Skimming a Grating Surface 378
  • D.Yu. Sergeeva, A.A. Tishchenko
    MEPhI, Moscow, Russia
  Smith-Purcell radiation as a base of Free Electron Lasers is actively studied experimentally and by simulating. Usually the beam is supposed to move at some distance above the target. In practice the distance is tried to decrease so that the beam passes very close to the target surface. Experimental data contains the information about grating heating. The authors of article* suggested the cause of the heating is that the beam skims the grating surface. Developing the method used in**,*** we give the analytical description of the X-Ray radiation arising when the beam of charge particles moves parallel above the periodical target, but the part of the beam crosses the target. The radiation arising is the superposition of Smith-Purcell radiation and transition radiation from the grating. This radiation determines the process of beam bunching and following gain of radiation.
*H.L.Andrews et al,Phys. Rev. ST AB 12 (2009) 080703
**A.A.Tishchenko, A.P.Potylitsyn, M.N.Strikhanov, Phys. Rev. E 70 (2004) 066501
***D.Yu.Sergeeva, A.A.Tishchenko, M.N.Strikhanov, NIM B 309 (2013) 189
TUP014 Forward X-Ray and Ultraviolet Smith-Purcell Radiation for FEL 384
  • A.A. Tishchenko, D.Yu. Sergeeva
    MEPhI, Moscow, Russia
  The scheme of Free Electron Lasers based on Smith-Purcell effect is well known to describe the process of interaction between an electron beam and evanescent wave, which bunches this beam. In this work we concentrate on the process of generation of the radiation propagating at small angles. In terms of approach described in detail in*,**, we investigate the Smith-Purcell radiation at oblique incidence of a single charged particle for X-Ray and UV frequency region. This forward radiation propagates through all the region of the beam moving and provides more close interaction between the beam and the radiation, than usual surface waves existing in FELs. Spectral and angular characteristics of the forward radiation are discussed from point of view its role in Smith-Purcell based FELs.
*A.P.Potylitsyn, M.I.Ryazanov, M.N.Strikhanov, A.A.Tishchenko, Diffraction Radiation from Relativistic Particles, Springer, 2011
**D.Yu.Sergeeva, A.A.Tishchenko, M.N.Strikhanov, NIM B 309 (2013) 189