Author: Lutman, A.A.
Paper Title Page
Soft X-ray Self-seeding Setup and Results at LCLS  
  • D.F. Ratner, J.W. Amann, D.K. Bohler, M. Boyes, D. Cocco, F.-J. Decker, Y. Ding, D. Fairley, Y. Feng, J.B. Hastings, P.A. Heimann, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, G. Marcus, A. Marinelli, T.J. Maxwell, S.P. Moeller, P.A. Montanez, D.S. Morton, H.-D. Nuhn, D.R. Walz, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
  • K. Chow, L.N. Rodes
    LBNL, Berkeley, California, USA
  • U. Flechsig
    PSI, Villigen PSI, Switzerland
  • S. Serkez
    DESY, Hamburg, Germany
  The soft X-ray self seeding program was designed to provide near transform-limited pulses in the range of 500 eV to 1000 eV. The project was a three-way collaboration between SLAC, Lawrence Berkeley National Lab, and the Paul Scherrer Institute in Switzerland. Installation finished in the Fall of 2013, and after the early stages of commissioning we have measured up to 0.5mJ pulse energy and resolving powers of up to 5000 across the design wavelength range, representing a several-fold increase in the brightness compared to the normal LCLS operating mode. Future work will aim to increase the total pulse energy and establish self-seeding as a robust user operation mode.  
slides icon Slides TUC02 [10.464 MB]  
THA02 Experimental Characterization of FEL Polarization Control with Cross Polarized Undulators 644
  • E. Ferrari, E. Allaria, G. De Ninno, B. Diviacco, D. Gauthier, L. Giannessi, G. Penco, C. Spezzani
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • J. Buck, M. Ilchen
    XFEL. EU, Hamburg, Germany
  • G. De Ninno, D. Gauthier
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • Z. Huang, A.A. Lutman
    SLAC, Menlo Park, California, USA
  • G. Lambert, B. Mahieu
    LOA, Palaiseau, France
  • J. Viefhaus
    DESY, Hamburg, Germany
  Polarization control of the coherent radiation is becoming an important feature of recent and future short wavelength free electron laser facilities. While polarization tuning can be achieved taking advantage of specially designed undulators, a scheme based on two consecutive undulators emitting orthogonally polarized fields has also been proposed. Developed initially in synchrotron radiation sources, crossed polarized undulator schemes could benefit from the coherent emission that characterize FELs. In this work we report the first detailed experimental characterization of the polarization properties of an FEL operated with crossed polarized undulators in the Soft-X-Rays. Aspects concerning the average degree of polarization and the shot to shot stability are investigated together with a comparison of the performance of various schemes to control and switch the polarization  
slides icon Slides THA02 [5.383 MB]